Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor

[1]  C. Tate,et al.  Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. , 2017, Current opinion in structural biology.

[2]  P. Paul-Gilloteaux,et al.  Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer , 2017 .

[3]  Tudor I. Oprea,et al.  A comprehensive map of molecular drug targets , 2016, Nature Reviews Drug Discovery.

[4]  A. J. Venkatakrishnan,et al.  Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region , 2016, Nature.

[5]  A. Leslie,et al.  Structure of the adenosine A2A receptor bound to an engineered G protein , 2016, Nature.

[6]  P Kolb,et al.  GPCRdb: the G protein‐coupled receptor database – an introduction , 2016, British journal of pharmacology.

[7]  M. Zimmer,et al.  Activation of the A2A adenosine G-protein-coupled receptor by conformational selection , 2016, Nature.

[8]  B. Gerhartz,et al.  Transfection of insect cell in suspension for efficient baculovirus generation , 2016, MethodsX.

[9]  S. Grzesiek,et al.  Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor , 2016, Nature.

[10]  Jillian Baker,et al.  Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol–Bound β1-Adrenergic Receptor , 2015, Molecular Pharmacology.

[11]  I. Shimada,et al.  Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the μ-Opioid Receptor , 2015, Angewandte Chemie.

[12]  Kurt Wüthrich,et al.  Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR , 2015, Proceedings of the National Academy of Sciences.

[13]  Jonathan S. Mason,et al.  Structures of G protein-coupled receptors reveal new opportunities for drug discovery. , 2015, Drug discovery today.

[14]  Aashish Manglik,et al.  Propagation of conformational changes during μ-opioid receptor activation , 2015, Nature.

[15]  Stephen M. Husbands,et al.  Structural insights into μ-opioid receptor activation , 2015, Nature.

[16]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[17]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[18]  I. Shimada,et al.  Functional dynamics of deuterated β2 -adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. , 2014, Angewandte Chemie.

[19]  Gebhard F. X. Schertler,et al.  The 2.1 Å Resolution Structure of Cyanopindolol-Bound β1-Adrenoceptor Identifies an Intramembrane Na+ Ion that Stabilises the Ligand-Free Receptor , 2014, PloS one.

[20]  J. Wess,et al.  Activation and allosteric modulation of a muscarinic acetylcholine receptor , 2013, Nature.

[21]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[22]  R. Dror,et al.  The role of ligands on the equilibria between functional states of a G protein-coupled receptor. , 2013, Journal of the American Chemical Society.

[23]  Albert C. Pan,et al.  The Dynamic Process of β2-Adrenergic Receptor Activation , 2013, Cell.

[24]  Ichio Shimada,et al.  Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region , 2012, Nature Communications.

[25]  C. Tate,et al.  Agonist-bound structures of G protein-coupled receptors. , 2012, Current opinion in structural biology.

[26]  Daniel Nietlispach,et al.  Compressed sensing reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins , 2012, Journal of biomolecular NMR.

[27]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[28]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[29]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[30]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[31]  C. Tate,et al.  The pharmacological effects of the thermostabilising (m23) mutations and intra and extracellular (β36) deletions essential for crystallisation of the turkey β-adrenoceptor , 2011, Naunyn-Schmiedeberg's Archives of Pharmacology.

[32]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[33]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[34]  S. Hyberts,et al.  Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. , 2010, Journal of the American Chemical Society.

[35]  David Colquhoun,et al.  On the nature of partial agonism in the nicotinic receptor superfamily , 2008, Nature.

[36]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[37]  Yoko Shibata,et al.  Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form , 2008, Proceedings of the National Academy of Sciences.

[38]  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[39]  Xavier Deupi,et al.  Conformational complexity of G-protein-coupled receptors. , 2007, Trends in pharmacological sciences.

[40]  M R G Taylor,et al.  Pharmacogenetics of the human beta-adrenergic receptors , 2007, The Pharmacogenomics Journal.

[41]  Paul Schanda,et al.  SOFAST-HMQC Experiments for Recording Two-dimensional Deteronuclear Correlation Spectra of Proteins within a Few Seconds , 2005, Journal of biomolecular NMR.

[42]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[43]  J. Ramachandran,et al.  Structure and Function of G Protein Coupled Receptors , 1990, Pharmaceutical Research.

[44]  M. Lohse,et al.  Constitutive Activity of the Human β1-Adrenergic Receptor in β1-Receptor Transgenic Mice , 2001 .

[45]  J. Gutkind,et al.  G-protein-coupled receptors and signaling networks: emerging paradigms. , 2001, Trends in pharmacological sciences.

[46]  A. IJzerman,et al.  Inverse agonism at G protein‐coupled receptors: (patho)physiological relevance and implications for drug discovery , 2000, British journal of pharmacology.

[47]  T. Kenakin,et al.  Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor , 1995, Nature.

[48]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[49]  Ray Freeman,et al.  Polychromatic Selective Pulses , 1993 .

[50]  J. Keeler,et al.  Experiments for recording pure-absorption heteronuclear correlation spectra using pulsed field gradients , 1992 .

[51]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[52]  Mary C. Brennan,et al.  on the , 1982 .