Quantum Algorithms via Linear Algebra: A Primer

This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians.

[1]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER , 2010 .

[2]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Tinkara Toš,et al.  Graph Algorithms in the Language of Linear Algebra , 2012, Software, environments, tools.

[4]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[5]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[6]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[7]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[8]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[9]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[10]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[11]  Stacey Jeffery,et al.  Nested Quantum Walks with Quantum Data Structures , 2012, SODA.

[12]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Volker Strassen,et al.  Berechnung und Programm. II , 1973, Acta Informatica.

[14]  Maarten Van den Nest,et al.  Efficient classical simulations of quantum fourier transforms and normalizer circuits over Abelian groups , 2012, Quantum Inf. Comput..

[15]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[16]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[17]  Kenneth Kuttler,et al.  Elementary Linear Algebra , 2012 .

[18]  D. Aharonov,et al.  The quantum FFT can be classically simulated , 2006, quant-ph/0611156.

[19]  Richard J. Lipton,et al.  Algorithms for Black-Box Fields and their Application to Cryptography (Extended Abstract) , 1996, CRYPTO.

[20]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[21]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[22]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[23]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[25]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[26]  Richard J. Lipton,et al.  On Tractable Exponential Sums , 2010, FAW.

[27]  Nicolas Gisin,et al.  Reply to the "Comment on: Testing the speed of 'spooky action at a distance' " , 2008, 0810.4607.

[28]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[30]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[31]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[32]  D. Coppersmith An approximate Fourier transform useful in quantum factoring", IBM Research Report RC19642 ,; R. Cle , 2002, quant-ph/0201067.

[33]  Vladimir P. Gerdt,et al.  A software package to construct polynomial sets over Z2 for determining the output of quantum computations , 2006 .

[34]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[35]  Michael A. Nielsen,et al.  Quantum computing and polynomial equations over the finite field Z 2 , 2004 .

[36]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[37]  R. Feynman Simulating physics with computers , 1999 .

[38]  Michael J. Fischer,et al.  Relations Among Complexity Measures , 1979, JACM.

[39]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[40]  E. Rieffel,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[41]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[42]  Ben Reichardt,et al.  Reflections for quantum query algorithms , 2010, SODA '11.

[43]  Jeffrey Shallit,et al.  Sums of divisors, perfect numbers, and factoring , 1984, STOC '84.

[44]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[45]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[46]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[47]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[48]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[49]  R. Jozsa On the simulation of quantum circuits , 2006, quant-ph/0603163.

[50]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[51]  Philip Ball,et al.  Physics of life: The dawn of quantum biology , 2011, Nature.

[52]  Ben Reichardt,et al.  Span-program-based quantum algorithm for evaluating formulas , 2007, Theory Comput..

[53]  Andrew M. Childs,et al.  Discrete-Query Quantum Algorithm for NAND Trees , 2009, Theory Comput..

[54]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[55]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[56]  Mikhail N. Vyalyi,et al.  Classical and quantum codes , 2002 .

[57]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[58]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[59]  John E. Savage,et al.  Computational Work and Time on Finite Machines , 1972, JACM.

[60]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[61]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[62]  Ben Reichardt Faster quantum algorithm for evaluating game trees , 2011, SODA '11.

[63]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[64]  R. Feynman Quantum mechanical computers , 1986 .

[65]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[66]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[67]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[68]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[69]  Noson S. Yanofsky,et al.  Quantum Computing for Computer Scientists , 2008 .

[70]  Andrew M. Childs,et al.  Quantum Query Complexity of Minor-Closed Graph Properties , 2010, SIAM J. Comput..

[71]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[72]  Frédéric Magniez,et al.  Improved quantum query algorithms for triangle finding and associativity testing , 2013, SODA.

[73]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[74]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[75]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[76]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[77]  D. Aharonov A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.

[78]  Stacey Jeffery,et al.  Time-Efficient Quantum Walks for 3-Distinctness , 2013, ICALP.

[79]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[80]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[81]  R. Portugal Quantum Walks and Search Algorithms , 2013 .

[82]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .