Computing a diameter-constrained minimum spanning tree

[1]  Cristina Requejo,et al.  A 2-path approach for odd-diameter-constrained minimum spanning and Steiner trees , 2004, Networks.

[2]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[3]  Andrew W. Shogan,et al.  Semi-greedy heuristics: An empirical study , 1987 .

[4]  Kerry Raymond,et al.  A tree-based algorithm for distributed mutual exclusion , 1989, TOCS.

[5]  G. Handler Minimax Location of a Facility in an Undirected Tree Graph , 1973 .

[6]  Gilbert Laporte,et al.  Metaheuristics in combinatorial optimization , 1996 .

[7]  P. Camerini,et al.  Complexity of spanning tree problems: Part I , 1980 .

[8]  Cid C. de Souza,et al.  Optimal rectangular partitions , 2003, Networks.

[9]  Francisco Barahona,et al.  The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..

[10]  Luís Gouveia,et al.  Network flow models for designing diameter‐constrained minimum‐spanning and Steiner trees , 2003, Networks.

[11]  Narsingh Deo,et al.  Computing a Diameter-Constrained Minimum Spanning Tree in Parallel , 2000, CIAC.

[12]  Bryant A. Julstrom,et al.  Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem , 2003, SAC '03.

[13]  Luís Gouveia,et al.  An intersecting tree model for odd-diameter-constrained minimum spanning and Steiner trees , 2006, Ann. Oper. Res..

[14]  Gilbert Laporte,et al.  Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints , 1991, Oper. Res. Lett..

[15]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[16]  Abilio Lucena Non Delayed Relax-and-Cut Algorithms , 2005, Ann. Oper. Res..

[17]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[18]  Guy Kortsarz,et al.  Approximating the Weight of Shallow Steiner Trees , 1999, Discret. Appl. Math..

[19]  Linus Schrage,et al.  A More Portable Fortran Random Number Generator , 1979, TOMS.

[20]  Bryant A. Julstrom,et al.  Encoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys , 2004, GECCO.

[21]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[22]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[23]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[24]  Abilio Lucena,et al.  Stronger K-tree relaxations for the vehicle routing problem , 2004, Eur. J. Oper. Res..

[25]  Nelson Maculan,et al.  The volume algorithm revisited: relation with bundle methods , 2002, Math. Program..

[26]  Luís Gouveia,et al.  A note on hop-constrained walk polytopes , 2004, Oper. Res. Lett..

[27]  Martin Gruber,et al.  Variable Neighborhood Search for the Bounded Diameter Minimum Spanning Tree Problem , 2005 .

[28]  Alexandre Salles da Cunha,et al.  Lower and upper bounds for the degree-constrained minimum spanning tree problem , 2007, Networks.

[29]  Abilio Lucena,et al.  Using Lagrangian dual information to generate degree constrained spanning trees , 2006, Discret. Appl. Math..

[30]  Celso C. Ribeiro,et al.  Solving Diameter Constrained Minimum Spanning Tree Problems in Dense Graphs , 2004, WEA.

[31]  Luís Gouveia,et al.  Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints , 1995, Comput. Oper. Res..

[32]  Geir Dahl,et al.  On the directed hop-constrained shortest path problem , 2004, Oper. Res. Lett..

[33]  Geir Dahl,et al.  The 2-hop spanning tree problem , 1998, Oper. Res. Lett..