Supramolecular [60]fullerene chemistry on surfaces.

This critical review documents the exceptional range of research avenues in [60]fullerene-based monolayers showing unique and spectacular physicochemical properties which prompted such materials to have potential applications in several directions, ranging from sensors and photovoltaic cells to nanostructured devices for advanced electronic applications, that have been pursued during the past decade. It illustrates how progress in covalent [60]fullerene functionalisation led to the development of spectacular surface-immobilised architectures, including dyads and triads for photoinduced electron and energy transfer, self-assembled on a wide variety of surfaces. All of these molecular assemblies and supramolecular arrays feature distinct properties as a consequence of the presence of different molecular units and their spatial arrangement. Since the properties of [60]fullerene-containing films are profoundly controlled by the deposition conditions, substrate of adsorption, and influenced by impurities or disordered surface structures, the progress of such new [60]fullerene-based materials strongly relies on the development of new versatile and broad preparative methodologies. Therefore, the systematic exploration of the most common approaches to prepare and characterise [60]fullerene-containing monolayers embedded into two- or three-dimensional networks will be reviewed in great detail together with their main limitations. Recent investigations hinting at potential technological applications addressing many important fundamental issues, such as a better understanding of interfacial electron transfer, ion transport in thin films, photovoltaic devices and the dynamics associated with monolayer self-assembly, are also highlighted.

[1]  François Diederich,et al.  Supramolecular fullerene chemistry , 1999 .

[2]  Tianbai He,et al.  Study of Elastic Modulus and Yield Strength of Polymer Thin Films Using Atomic Force Microscopy , 2001 .

[3]  Ralph G. Nuzzo,et al.  Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers , 1990 .

[4]  Allen G. Oliver,et al.  SELECTIVE SUPRAMOLECULAR PORPHYRIN/FULLERENE INTERACTIONS , 1999 .

[5]  S. Fukuzumi,et al.  Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. , 2003, Journal of the American Chemical Society.

[6]  L. Echegoyen,et al.  Non-covalent immobilization of C60 on gold surfaces by SAMs of porphyrin derivatives , 2006 .

[7]  V. Palermo,et al.  Pyrazolino[60]fullerene-oligophenylenevinylene dumbbell-shaped arrays: synthesis, electrochemistry, photophysics, and self-assembly on surfaces. , 2005, Chemistry.

[8]  Dongho Kim,et al.  Unusually high performance photovoltaic cell based on a [60]fullerene metal cluster-porphyrin dyad SAM on an ITO electrode. , 2005, Journal of the American Chemical Society.

[9]  D. Bethune,et al.  Imaging C60 clusters on a surface using a scanning tunnelling microscope , 1990, Nature.

[10]  Stephen R. Wilson,et al.  Interfacial Hydrogen Bonding. Self-Assembly of a Monolayer of a Fullerene−Crown Ether Derivative on Gold Surfaces Derivatized with an Ammonium-Terminated Alkanethiolate , 1996 .

[11]  T. Ebbesen,et al.  Crystal growth and structure of fullerene thin films , 1995 .

[12]  Maurizio Prato,et al.  Excited-State Properties of C60 Fullerene Derivatives , 2000 .

[13]  F. Diederich,et al.  Exceptional redox and photophysical properties of a triply fused diporphyrin-C60 conjugate: novel scaffolds for multicharge storage in molecular scale electronics. , 2003, Angewandte Chemie.

[14]  Dongho Kim,et al.  Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[15]  M. Prato,et al.  Fulleropyrrolidines: A Family of Full-Fledged Fullerene Derivatives , 1998 .

[16]  R. Nuzzo,et al.  Fundamental Studies of the Chemisorption of Organosulfur Compounds on Au( 111). Implications for Molecular Self-Assembly on Gold Surfaces , 1987 .

[17]  A. Jen,et al.  Ordered self-assembly and electronic behavior of C60-anthrylphenylacetylene hybrid. , 2004, Angewandte Chemie.

[18]  D. Guillon,et al.  Amphiphilic and mesomorphic fullerene-based dendrimers , 2003 .

[19]  S. Shinkai,et al.  Efficient photocurrent generation in novel self-assembled multilayers comprised of [60]fullerene-cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer. , 2001, Journal of the American Chemical Society.

[20]  Xingyao Zhou,et al.  The Electrochemical Characteristics of C60‐Glutathione Modified Au Electrode and the Electrocatalytic Oxidationof NADH , 2001 .

[21]  Ralph G. Nuzzo,et al.  ADSORPTION OF BIFUNCTIONAL ORGANIC DISULFIDES ON GOLD SURFACES , 1983 .

[22]  Resonant tunnelling through a C(60) molecular junction in a liquid environment. , 2005, Nanotechnology.

[23]  H. Imahori,et al.  Fullerenes as Novel Acceptors in Photosynthetic Electron Transfer , 1999 .

[24]  F. Diederich,et al.  Lateral Electron Transport inside a Monolayer of Derivatized Fullerenes Anchored on Nanocrystalline Metal Oxide Films , 2002 .

[25]  F. Tham,et al.  Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Echegoyen,et al.  Noncovalent Immobilization of C60 on Gold Surfaces by SAMs of Cyclotriveratrylene Derivatives , 2005 .

[27]  R Lloyd Carroll,et al.  The genesis of molecular electronics. , 2002, Angewandte Chemie.

[28]  Chad A. Mirkin,et al.  Fullerene self-assembly onto (MeO)3Si(CH2)3NH2-modified oxide surfaces , 1993 .

[29]  G. Whitesides,et al.  Self-assembled monolayers of n-alkanethiolates on copper are Barrier films that protect the metal against oxidation by air , 1992 .

[30]  Jian Wang,et al.  Large-Area, Full-Color Image Sensors Made with Semiconducting Polymers , 1998 .

[31]  F. Diederich,et al.  Oligoporphyrin arrays conjugated to [60] fullerene: Preparation, NMR analysis, and photophysical and electrochemical properties , 2005 .

[32]  F. Diederich,et al.  Adsorption and dynamics of long-range interacting fullerenes in a flexible, two-dimensional, nanoporous porphyrin network. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  F. Diederich,et al.  Tuning Electronic Properties of Semiconductors by Adsorption of [60]Fullerene Carboxylic Acid Derivatives , 2002 .

[34]  T. McCarley,et al.  Toward the analysis of electrochemically modified self-assembled monolayers. Electrospray ionization mass spectrometry of organothiolates , 1997 .

[35]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[36]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[37]  F. Dickert,et al.  Sensor materials for solvent vapor detection—donor–acceptor and host–guest interactions , 1993 .

[38]  W. B. Caldwell,et al.  A WELL-DEFINED SURFACE-CONFINABLE FULLERENE : MONOLAYER SELF-ASSEMBLY ON AU(111) , 1994 .

[39]  J. Clifford,et al.  Synthesis and excited state properties of a [60]fullerene derivative bearing a star-shaped multi-photon absorption chromophore. , 2006, Chemical communications.

[40]  Belén Ferrer,et al.  Artifcial molecular motors and machines: design, principles, and prototype systems , 2005 .

[41]  Salvatore Giuffrida,et al.  Engineered Silica Surfaces with an Assembled C60 Fullerene Monolayer , 2005 .

[42]  M. Thompson Use of Layered Metal Phosphonates for the Design and Construction of Molecular Materials , 1994 .

[43]  R. Colton,et al.  The interaction of C60 with noble metal surfaces , 1993 .

[44]  D. Guldi,et al.  Hydrogen-bonding motifs in fullerene chemistry. , 2005, Angewandte Chemie.

[45]  J. Nierengarten Dendritic encapsulation of active core molecules , 2003 .

[46]  A. Gewirth,et al.  Electrochemical Applications of in Situ Scanning Probe Microscopy. , 1997, Chemical reviews.

[47]  L. Sánchez,et al.  C60-based dumbbells: connecting C60 cages through electroactive bridges , 2005 .

[48]  B. Hong,et al.  Covalent surface confinement of osmium–terpyridine complexes: a UV–VIS and XPS study , 1997 .

[49]  J. Rebek,et al.  Exceptionally strong electronic communication through hydrogen bonds in porphyrin-C60 pairs. , 2006, Angewandte Chemie.

[50]  L. Dalton,et al.  Current rectification in a Langmuir-Schaefer monolayer of fullerene-bis-[4-diphenylamino-4' '-(n-ethyl-n-2' ''-ethyl)amino-1,4-diphenyl-1,3-butadiene] malonate between Au electrodes. , 2005, The journal of physical chemistry. B.

[51]  Chad A. Mirkin,et al.  Self-Assembled Monolayer Films of C60 on Cysteamine-Modified Gold , 1993 .

[52]  W. Brittain,et al.  Atomic force microscopy of C60 tethered to a self-assembled monolayer , 1994 .

[53]  F. Diederich,et al.  Templated Regioselective and Stereoselective Synthesis in Fullerene Chemistry , 1999 .

[54]  N. Armaroli,et al.  Fullerohelicates: a new class of fullerene-containing supermolecules. , 2004, Chemical Communications.

[55]  F. Diederich,et al.  A Two‐Dimensional Porphyrin‐Based Porous Network Featuring Communicating Cavities for the Templated Complexation of Fullerenes , 2006 .

[56]  V. T. Hoang,et al.  Synthesis and formation of monolayer self-assembly of thiol appended fullerenes and fullerene–ferrocene dyads on gold electrode , 2002 .

[57]  D. Guldi Fullerenes: three dimensional electron acceptor materials , 2000 .

[58]  H. Imahori,et al.  Photoinduced electron transfer at a gold electrode modified with a self-assembled monolayer of fullerene , 1999 .

[59]  Zhenyang Lin,et al.  Supramolecular interactions between fullerenes and porphyrins. , 2003, Journal of the American Chemical Society.

[60]  N. Oxtoby,et al.  Growth induced reordering of fullerene clusters trapped in a two-dimensional supramolecular network. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[61]  J. Gimzewski,et al.  Physical principles of the single- C 60 transistor effect , 1998 .

[62]  Nierengarten Fullerodendrimers: a new class of compounds for supramolecular chemistry and materials science applications , 2000, Chemistry.

[63]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[64]  Franz L. Dickert,et al.  Fullerene/liquid crystal mixtures as QMB- and SAW-coatings – detection of diesel- and solvent-vapours , 1997 .

[65]  J. Nierengarten Fullerodendrimers: fullerene-containing macromolecules with intriguing properties. , 2003, Topics in current chemistry.

[66]  D. Allara,et al.  Quantitative determination of molecular structure in multilayered thin films of biaxial and lower symmetry from photon spectroscopies. I. Reflection infrared vibrational spectroscopy , 1992 .

[67]  Maurizio Prato,et al.  Electrostatic interactions by design. Versatile methodology towards multifunctional assemblies/nanostructured electrodes. , 2004, Chemical communications.

[68]  S. Fukuzumi,et al.  Large photocurrent generation of gold electrodes modified with [60]fullerene-linked oligothiophenes bearing a tripodal rigid anchor. , 2002, Journal of the American Chemical Society.

[69]  F. Diederich,et al.  Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. , 2004, Angewandte Chemie.

[70]  A. Patnaik,et al.  Electrical rectification from a fullerene[60]-dyad based metal-organic-metal junction. , 2006, Chemical communications.

[71]  I. Yamazaki,et al.  Vectorial electron relay at ITO electrodes modified with self-assembled monolayers of ferrocene-porphyrin-fullerene triads and porphyrin-fullerene Dyads for molecular photovoltaic devices. , 2004, Chemistry.

[72]  Wlodzimierz Kutner,et al.  Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes , 2003 .

[73]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[74]  J. F. Stoddart,et al.  A photoactive molecular triad as a nanoscale power supply for a supramolecular machine. , 2005, Chemistry.

[75]  Ernö Pretsch,et al.  Redox-Active Self-Assembled Monolayers for Solid-Contact Polymeric Membrane Ion-Selective Electrodes , 2002 .

[76]  E. Nakamura,et al.  Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. , 2003, Accounts of chemical research.

[77]  Helge Lemmetyinen,et al.  An Extremely Small Reorganization Energy of Electron Transfer in Porphyrin−Fullerene Dyad , 2001 .

[78]  H. Imahori,et al.  An Investigation of Photocurrent Generation by Gold Electrodes Modified with Self-Assembled Monolayers of C60 , 1999 .

[79]  Atsushi Ikeda,et al.  A dendritic porphyrin receptor for C(60) which features a profound positive allosteric effect. , 2002, Angewandte Chemie.

[80]  M. Prato,et al.  Functionalization and applications of []fullerene , 2006 .

[81]  Yuyuan Tian,et al.  Self-assembled fullerene-derivative monolayers on a gold substrate using phenanthroline-Au interactions , 1998 .

[82]  D. Guldi,et al.  Langmuir Blodgett Films of C60 and C60-Materials , 2002 .

[83]  Ayelet Vilan,et al.  How organic molecules can control electronic devices. , 2002, Trends in biotechnology.

[84]  N. Higashi,et al.  Immobilization and cleavage of DNA at cationic, self-assembledmonolayers containing C60 on gold , 1997 .

[85]  M. Prato,et al.  Synthesis and applications of amphiphilic fulleropyrrolidine derivatives. , 2006, Organic & biomolecular chemistry.

[86]  N. Oxtoby,et al.  Controlling molecular deposition and layer structure with supramolecular surface assemblies , 2003, Nature.

[87]  T. Aida,et al.  Construction of segregated arrays of multiple donor and acceptor units using a dendritic scaffold: remarkable dendrimer effects on photoinduced charge separation. , 2006, Journal of the American Chemical Society.

[88]  N. Armaroli Photoinduced Energy Transfer Processes in Functionalized Fullerenes , 2002 .

[89]  F. Diederich,et al.  Self-assembly of [60]fullerene-thiol derivatives on mercury surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[90]  Gonen Ashkenasy,et al.  Molecular engineering of semiconductor surfaces and devices. , 2002, Accounts of chemical research.

[91]  Alberto Credi,et al.  Artificial Molecular Motors Powered by Light , 2006 .

[92]  C. Reed,et al.  Fullerene-porphyrin constructs. , 2005, Accounts of chemical research.

[93]  M. Prato,et al.  Iconography : Fullerene photoactive dyads assembled by axial coordination with metals , 2006 .

[94]  M. Rosseinsky Recent Developments in the Chemistry and Physics of Metal Fullerides , 1998 .

[95]  Dirk M Guldi,et al.  Multifunctional molecular carbon materials--from fullerenes to carbon nanotubes. , 2006, Chemical Society reviews.

[96]  M. Prato,et al.  Stepwise Assembled Photoactive Films Containing Donor-Linked Fullerenes. , 2000, Angewandte Chemie.

[97]  G. Brusatin,et al.  Linear and nonlinear optical properties of fullerenes in solid state materials , 2002 .

[98]  J. Nierengarten Chemical modification of C60 for materials science applications , 2004 .

[99]  R. Bernstein,et al.  On the Mechanism of DNA Cleavage by Fullerenes Investigated in Model Systems: Electron Transfer from Guanosine and 8-Oxo-Guanosine Derivatives to C60 , 1999 .

[100]  Y. Matano,et al.  Nanostructured artificial photosynthesis , 2003 .

[101]  J. Sagiv,et al.  Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces , 1980 .

[102]  M. Prato,et al.  Liquid-crystalline fullerene-ferrocene dyads , 2004 .

[103]  Dominique Vuillaume,et al.  Analytical Model for Molecular-Scale Charge Transport † , 2001 .

[104]  P. Hansma,et al.  Size and packing of fullerenes on C60/C70 crystal surfaces studied by atomic force microscopy , 1992 .

[105]  P. Kamat,et al.  Fullerene-Functionalized Gold Nanoparticles. A Self-Assembled Photoactive Antenna-Metal Nanocore Assembly , 2002 .

[106]  M. Prato,et al.  Electrical Rectification in a Langmuir−Blodgett Monolayer of Dimethyanilinoazafullerene Sandwiched between Gold Electrodes , 2003 .

[107]  F. Diederich,et al.  Photocurrent generation at a fullerene self-assembled monolayer-modified gold electrode cast with a polyurethane membrane , 2000 .

[108]  G. Whitesides,et al.  Comparisons of self-assembled monolayers on silver and gold: mixed monolayers derived from HS(CH2)21X and HS(CH2)10Y (X, Y = CH3, CH2OH) have similar properties , 1991 .

[109]  L. Echegoyen,et al.  Supramolecular immobilization of fullerenes on gold surfaces: receptors based on calix[n]arenes, cyclotriveratrylene (CTV) and porphyrins , 2006 .

[110]  I. Yamazaki,et al.  Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics , 2004 .

[111]  Daoben Zhu,et al.  The self-assembly of [60]fullerene-substituted 2,2′-bipyridine on the surface of Au(111) and Au nanoparticles , 2001 .

[112]  A. Jen,et al.  Highly efficient photocurrent generation from a self-assembled monolayer film of a novel C60-Tethered 2,5-dithienylpyrrole triad , 2004 .

[113]  K. Kelly,et al.  Fullerene-terminated alkanethiolate SAMs on gold generated from unsymmetrical disulfides , 1999 .

[114]  S. Shinkai,et al.  Supramolecular design of photocurrent-generating devices using fullerenes aimed at modelling artificial photosynthesis , 2005 .

[115]  F. Schreiber Structure and growth of self-assembling monolayers , 2000 .

[116]  A. Hirsch Principles of Fullerene Reactivity , 1999 .

[117]  M. Prato,et al.  Layer-by-Layer Construction of Nanostructured Porphyrin−Fullerene Electrodes , 2002 .

[118]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[119]  H. Imahori,et al.  Synthesis and photoelectrochemical properties of a self-assembled monolayer of a ferrocene–porphyrin–fullerene triad on a gold electrode , 1999 .

[120]  P. Hansma,et al.  Atomic force microscopy of C60/C70 single-crystal fullerenes under ethanol , 1993 .

[121]  Nazario Martin,et al.  Materials for organic solar cells: the C60/pi-conjugated oligomer approach. , 2005, Chemical Society reviews.

[122]  M. Fox,et al.  Electrochemical charging of a fullerene-functionalized self-assembled monolayer on au(111). , 2004, The Journal of organic chemistry.

[123]  A. Ulman,et al.  Ultrathin organic films: From Langmuir-Blodgett to self assembly , 1991 .

[124]  F. Diederich,et al.  Fullerene‐ and porphyrin‐appended crown ethers: Synthesis and preparation of stable langmuir and langmuir‐blodgett films , 2005 .

[125]  Itamar Willner,et al.  C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase , 1998 .

[126]  J. Roncali,et al.  Formation and electrochemical desorption of stable and electroactive self-assembled monolayers (SAMs) of oligothiophene–fulleropyrrolidine dyads , 2001 .

[127]  H. Imahori,et al.  Synthesis and Self-Assembly of Porphyrin-linked Fullerene on Gold Surface Using S-Au Linkage , 1996 .

[128]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[129]  C. Frank,et al.  Naphthalene chromophore tethered in the constrained environment of a self-assembled monolayer , 1993 .

[130]  Dirk M Guldi,et al.  Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. , 2002, Chemical Society reviews.

[131]  S. Shinkai,et al.  Facile construction of an ultra-thin [60]fullerene layer from [60]fullerene–homooxacalix[3]arene complexes on a gold surface , 2000 .

[132]  R. Georgiadis,et al.  In situ kinetics of self-assembly by surface plasmon resonance spectroscopy , 1996 .

[133]  S. Fukuzumi,et al.  Porphyrin‐ and Fullerene‐Based Molecular Photovoltaic Devices , 2004 .

[134]  Robert H. Hauge,et al.  Heats of sublimation from a polycrystalline mixture of carbon clusters (C60 and C70) , 1991 .

[135]  N. Armaroli From metal complexes to fullerene arrays: exploring the exciting world of supramolecular photochemistry fifteen years after its birth , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.