The design and operation of solid-state Raman lasers

Solid-state Raman lasers are a practical and efficient class of laser systems which can substantially increase the spectral coverage of solid-state lasers. In this review, the theory of stimulated Raman scattering is presented in the context of understanding the design and operation of solid-state Raman lasers. The key design issues are discussed in relation to achieving efficient frequency conversion for various types of experimental configurations. Particular emphasis is placed on the effects of the thermal loading which occurs in Raman-active crystals. An overview is given of the performance characteristics of many of the devices reported to date, while selected experimental systems are reviewed in greater depth.

[1]  E. Ammann Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate , 1979 .

[2]  AnnMarie L. Oien,et al.  Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP , 1997 .

[3]  N. Bloembergen,et al.  THE STIMULATED RAMAN EFFECT. , 1967 .

[4]  R. Loudon,et al.  The Raman effect in crystals , 1964 .

[5]  W. Zinth,et al.  Frequency shifts in stimulated Raman scattering , 1980 .

[6]  I. Christov,et al.  Growth of Raman-Stokes waves in focused pump beams , 1985 .

[7]  Yehuda B. Band,et al.  Intracavity Raman lasers , 1989 .

[8]  Tasoltan T. Basiev,et al.  Physical, chemical and optical properties of barium nitrate Raman crystal , 1999 .

[9]  A. de Martino,et al.  High-efficiency pulse compression with intracavity Raman oscillators. , 1983, Optics letters.

[10]  J. Findeisen,et al.  Efficient Picosecond PbWo/sub 4/ And Two-wavelength KGd(Wo/sub 1/)/sub 2/ Raman Lasers In The IR And Visible , 1999, IEEE Journal of Quantum Electronics.

[11]  Clifford R. Pollock,et al.  OSA trends in optics and photonics on advanced solid state lasers , 1996 .

[12]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[13]  K. Repasky,et al.  Continuous-wave Raman laser in H(2). , 1998, Optics letters.

[14]  C. S. Wang,et al.  THEORY OF STOKES PULSE SHAPES IN TRANSIENT STIMULATED RAMAN SCATTERING. , 1970 .

[15]  Tasoltan T. Basiev,et al.  Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2− color centers by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals , 1987 .

[16]  M. Geller,et al.  STIMULATED EMISSION OF STOKES AND ANTI‐STOKES RAMAN LINES FROM DIAMOND, CALCITE, AND α‐SULFUR SINGLE CRYSTALS , 1963 .

[17]  G. Schindler,et al.  Numerical model of multiple-Raman-shifting excimer lasers to the blue-green in H(2). , 1981, Optics letters.

[18]  Alexander A. Sobol,et al.  Raman spectroscopy of crystals for stimulated Raman scattering , 1999 .

[19]  J. Piper,et al.  Diode-pumped LiIO/sub 3/ intracavity Raman lasers , 2000, IEEE Journal of Quantum Electronics.

[20]  S. Brueck,et al.  Efficient Raman frequency conversion in liquid nitrogen , 1982 .

[21]  Igory V. Mochalov,et al.  Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd) , 1997 .

[22]  J. Piper,et al.  Efficient all-solid-state yellow laser source producing 1.2-W average power. , 1999, Optics Letters.

[23]  H. Eichler,et al.  Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser , 2000 .

[24]  Yung-Fu Chen,et al.  Diode-pumped Q-switched Nd : YVO4 yellow laser with intracavity sum-frequency mixing , 2002 .

[25]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[26]  Alexander A. Sobol,et al.  Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers , 2000 .

[27]  R. Powell,et al.  Comparative spontaneous Raman spectroscopy of crystals for Raman lasers. , 1999, Applied optics.

[28]  J. Ackerhalt,et al.  Short-pulse intracavity Raman laser. , 1988, Optics letters.

[29]  R. B. Kay,et al.  Stimulated Raman scattering in hydrogen pumped with a tunable, high power, narrow linewidth alexandrite laser , 1993 .

[30]  William K. Bischel,et al.  Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H 2 , 1986 .

[31]  G. M. Gualberto,et al.  Raman spectra from oblique phonons in powdered samples , 1974 .

[32]  A. M. Prokhorov,et al.  Stimulated Raman scattering of laser radiation in Raman crystals , 1999 .

[33]  Michael Bass,et al.  Handbook of optics , 1995 .

[34]  A. Lagatsky,et al.  Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO(4))(2) laser. , 2000, Optics letters.

[35]  A. Kholodnykh,et al.  Competition between stimulated Raman scattering and parametric oscillation in the resonator of an optical parametric oscillator with an LiIO3 crystal , 1977 .

[36]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[37]  E. O. Ammann,et al.  0. 9-W Raman oscillator , 1977 .

[38]  W. Kaiser,et al.  Vibrational dynamics of liquids and solids investigated by picosecond light pulses , 1978 .

[39]  A. Stepanov,et al.  Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals , 1986 .

[40]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[41]  Helena Jelínková,et al.  Efficient Raman shifting of picosecond pulses using BaWO4 crystal , 2000 .

[42]  Yaochun Shen Principles of nonlinear optics , 1984 .

[43]  E. Ammann High-average-power Raman oscillator employing a shared-resonator configuration , 1977, IEEE Journal of Quantum Electronics.

[44]  James C. Barnes,et al.  Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers , 2001 .

[45]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[46]  Nobuo Takeuchi,et al.  Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser , 2001 .

[47]  Theory of Raman gain spectrum transformations , 1999 .

[48]  R. A. Fields,et al.  Thermal modeling of continuous‐wave end‐pumped solid‐state lasers , 1990 .

[49]  Richard C. Powell,et al.  Intracavity Raman conversion and Raman beam cleanup , 1999 .

[50]  Helen M. Pask,et al.  Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser , 1998 .

[51]  D. Jaque,et al.  Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated raman scattering-active crystals. , 1999, Applied optics.

[52]  R. Powell,et al.  Generation of 1.5-mu m radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals. , 1995, Optics letters.

[53]  A. S. Eremenko,et al.  BRIEF COMMUNICATIONS: Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals , 1980 .

[54]  G. Gurzadyan,et al.  Handbook of nonlinear optical crystals , 1991 .

[55]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[56]  R. Crow,et al.  Raman susceptibility measurements and stimulated Raman effect in KDP , 1973 .

[57]  A. Laubereau,et al.  High intensity Raman interactions , 1979 .

[58]  James C. Barnes,et al.  High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals , 2000 .

[59]  Tasoltan T. Basiev,et al.  Stimulated Raman scattering of picosecond pulses in barium nitrate crystals , 1993 .

[60]  Alain Brenier,et al.  Eye-safe laser radiation from stimulated Raman scattering frequency self-conversion in KGd(WO4)2:Nd3+ , 2001 .

[61]  V. A. Lisinetskii,et al.  All solid-state diode-pumped Raman laser with self-frequency conversion , 1999 .

[62]  R. Powell Physics of Solid-State Laser Materials , 1998 .

[63]  Govind P. Agrawal,et al.  Laser instabilities: a modern perspective , 1998 .

[64]  Helena Jelínková,et al.  Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO(4) crystal. , 2002, Optics letters.

[65]  A. Lagatsky,et al.  Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2). , 1997, Optics letters.

[66]  T. Chyba,et al.  Solid-state barium nitrate Raman laser in the visible region , 1996 .