Multimedia event detection with ℓ2-regularized logistic Gaussian mixture regression

[1]  Shoou-I Yu,et al.  Multimedia classification and event detection using double fusion , 2014, Multimedia Tools and Applications.

[2]  M. Shah,et al.  Recognizing 50 human action categories of web videos , 2013, Machine Vision and Applications.

[3]  C. Schmid,et al.  Dense Trajectories and Motion Boundary Descriptors for Action Recognition , 2013, International Journal of Computer Vision.

[4]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[5]  Zi Huang,et al.  Robust cross-media transfer for visual event detection , 2012, ACM Multimedia.

[6]  Jason J. Corso,et al.  Action bank: A high-level representation of activity in video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Aude Billard,et al.  Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models , 2011, IEEE Transactions on Robotics.

[8]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  A. Smeaton,et al.  TRECVID 2013 -- An Overview of the Goals, Tasks, Data, Evaluation Mechanisms, and Metrics | NIST , 2011 .

[10]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[11]  Jen-Hui Chuang,et al.  Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling , 2011, IEEE Transactions on Image Processing.

[12]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[13]  Hao Su,et al.  Objects as Attributes for Scene Classification , 2010, ECCV Workshops.

[14]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[15]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Driss Aboutajdine,et al.  Textural feature selection by joint mutual information based on Gaussian mixture model for multispectral image classification , 2010, Pattern Recognit. Lett..

[17]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[18]  J. Lafferty,et al.  High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.

[19]  Gavin C. Cawley,et al.  On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..

[20]  Klaus-Robert Müller,et al.  Efficient and Accurate Lp-Norm Multiple Kernel Learning , 2009, NIPS.

[21]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[22]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Antonio Torralba,et al.  Recognizing indoor scenes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Mehryar Mohri,et al.  L2 Regularization for Learning Kernels , 2009, UAI.

[25]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[26]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[27]  Shie Mannor,et al.  Regularized Policy Iteration , 2008, NIPS.

[28]  Dong Xu,et al.  Video Event Recognition Using Kernel Methods with Multilevel Temporal Alignment , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Chong-Wah Ngo,et al.  Video event detection using motion relativity and visual relatedness , 2008, ACM Multimedia.

[30]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[31]  Lei Wang,et al.  Feature Selection with Kernel Class Separability , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Mubarak Shah,et al.  Action MACH a spatio-temporal Maximum Average Correlation Height filter for action recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Cordelia Schmid,et al.  Learning realistic human actions from movies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[36]  E. Candès,et al.  Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.

[37]  Fei-Fei Li,et al.  What, where and who? Classifying events by scene and object recognition , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression , 2007, J. Mach. Learn. Res..

[39]  Klas Markström,et al.  On the complexity of matrix reduction over finite fields , 2007, Adv. Appl. Math..

[40]  Mark W. Schmidt,et al.  Fast Optimization Methods for L1 Regularization: A Comparative Study and Two New Approaches , 2007, ECML.

[41]  Mee Young Park,et al.  L1‐regularization path algorithm for generalized linear models , 2007 .

[42]  Senjian An,et al.  Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression , 2007, Pattern Recognit..

[43]  Milind R. Naphade,et al.  Classification of video events using 4-dimensional time-compressed motion features , 2007, CIVR '07.

[44]  Jianfeng Gao,et al.  Scalable training of L1-regularized log-linear models , 2007, ICML '07.

[45]  Weiming Zhang,et al.  A Semantic Event Detection Approach for Soccer Video based on Perception Concepts and Finiste State Machines , 2007, Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '07).

[46]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[47]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[48]  Changsheng Xu,et al.  Live sports event detection based on broadcast video and web-casting text , 2006, MM '06.

[49]  Shahram Ebadollahi,et al.  Visual Event Detection using Multi-Dimensional Concept Dynamics , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[50]  Chris H. Q. Ding,et al.  R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.

[51]  Noel E. O'Connor,et al.  Event detection in field sports video using audio-visual features and a support vector Machine , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[52]  Bin Wang,et al.  A probabilistic model for retrospective news event detection , 2005, SIGIR '05.

[53]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[55]  Chung-Lin Huang,et al.  Semantics-based highlight extraction of soccer program using DBN , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[56]  Lorenzo Rosasco,et al.  Model Selection for Regularized Least-Squares Algorithm in Learning Theory , 2005, Found. Comput. Math..

[57]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[58]  G. LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[59]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[60]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[61]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[62]  M. Luo,et al.  Pyramidwise structuring for soccer highlight extraction , 2003, Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint.

[63]  Alberto Del Bimbo,et al.  Semantic annotation of soccer videos: automatic highlights identification , 2003, Comput. Vis. Image Underst..

[64]  Ivan Laptev,et al.  On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[65]  James Theiler,et al.  Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space , 2003, J. Mach. Learn. Res..

[66]  Shih-Fu Chang,et al.  Event detection in baseball video using superimposed caption recognition , 2002, MULTIMEDIA '02.

[67]  Alberto Del Bimbo,et al.  Soccer highlights detection and recognition using HMMs , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[68]  Shih-Fu Chang,et al.  Algorithms and system for segmentation and structure analysis in soccer video , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[69]  Gunnar Rätsch,et al.  Soft Margins for AdaBoost , 2001, Machine Learning.

[70]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[72]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[73]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[74]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[75]  Shoou-I Yu,et al.  E-LAMP: integration of innovative ideas for multimedia event detection , 2013, Machine Vision and Applications.

[76]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[77]  Daniel P. W. Ellis,et al.  IBM Research and Columbia University TRECVID-2011 Multimedia Event Detection (MED) System , 2011, TRECVID.

[78]  Mubarak Shah,et al.  Columbia-UCF TRECVID2010 Multimedia Event Detection: Combining Multiple Modalities, Contextual Concepts, and Temporal Matching , 2010, TRECVID.

[79]  Alexander G. Hauptmann,et al.  MoSIFT: Recognizing Human Actions in Surveillance Videos , 2009 .

[80]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[81]  Naomi Harte,et al.  On Parsing Visual Sequences with the Hidden Markov Model , 2009, EURASIP J. Image Video Process..

[82]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[83]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[84]  Michael I. Jordan,et al.  Multi-task feature selection , 2006 .

[85]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[86]  Joshua Goodman,et al.  Exponential Priors for Maximum Entropy Models , 2004, NAACL.

[87]  Bruce A. Draper,et al.  PCA vs. ICA: A Comparison on the FERET Data Set , 2002, JCIS.

[88]  Shih-Fu Chang,et al.  Algorithms and system for segmentation and structure analysis in soccer video , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[89]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[90]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[91]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[92]  David G. Stork,et al.  Pattern Classification , 1973 .