Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior

[1]  Yun Wang,et al.  Hierarchical organization of cortical and thalamic connectivity , 2019, Nature.

[2]  J. Johansen,et al.  Neuromodulation in circuits of aversive emotional learning , 2019, Nature Neuroscience.

[3]  Drew B. Headley,et al.  Embracing Complexity in Defensive Networks , 2019, Neuron.

[4]  F. Chen,et al.  Distinct Anatomical Connectivity Patterns Differentiate Subdivisions of the Nonlemniscal Auditory Thalamus in Mice. , 2019, Cerebral cortex.

[5]  Attila Losonczy,et al.  Brainstem nucleus incertus controls contextual memory formation , 2019, Science.

[6]  Matthew T Rich,et al.  Plasticity at Thalamo-amygdala Synapses Regulates Cocaine-Cue Memory Formation and Extinction. , 2019, Cell reports.

[7]  Yingjie Zhu,et al.  Dynamic salience processing in paraventricular thalamus gates associative learning , 2018, Science.

[8]  P. Barthó,et al.  A highly collateralized thalamic cell type with arousal predicting activity serves as a key hub for graded state transitions in the forebrain , 2018, Nature Neuroscience.

[9]  Jan Gründemann,et al.  Adaptive disinhibitory gating by VIP interneurons permits associative learning , 2018, bioRxiv.

[10]  T. Netoff,et al.  Responses of thalamic neurons to itch- and pain-producing stimuli in rats. , 2018, Journal of neurophysiology.

[11]  Alon Amir,et al.  Vigilance-Associated Gamma Oscillations Coordinate the Ensemble Activity of Basolateral Amygdala Neurons , 2018, Neuron.

[12]  M. Bickford,et al.  The mouse pulvinar nucleus: Organization of the tectorecipient zones , 2017, Visual Neuroscience.

[13]  Jesse M. Gray,et al.  Brain-wide maps of Fos expression during fear learning and recall. , 2017, Learning & memory.

[14]  Pablo E. Jercog,et al.  Neural ensemble dynamics underlying a long-term associative memory , 2017, Nature.

[15]  O. Yizhar,et al.  Biophysical constraints of optogenetic inhibition at presynaptic terminals , 2016, Nature Neuroscience.

[16]  Robert D. Rafal,et al.  Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography , 2015, Journal of neurophysiology.

[17]  Sung Han,et al.  Elucidating an Affective Pain Circuit that Creates a Threat Memory , 2015, Cell.

[18]  A. Lüthi,et al.  Sensory Inputs to Intercalated Cells Provide Fear-Learning Modulated Inhibition to the Basolateral Amygdala , 2015, Neuron.

[19]  Kenneth D Harris,et al.  Spike sorting for large, dense electrode arrays , 2015, Nature Neuroscience.

[20]  Gregory J. Quirk,et al.  A temporal shift in the circuits mediating retrieval of fear memory , 2014, Nature.

[21]  Jason Tucciarone,et al.  The paraventricular thalamus controls a central amygdala fear circuit , 2014, Nature.

[22]  C. Herry,et al.  Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery , 2014, Neurobiology of Learning and Memory.

[23]  L. Acsády,et al.  The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala , 2014, The European journal of neuroscience.

[24]  Sadegh Nabavi,et al.  Engineering a memory with LTD and LTP , 2014, Nature.

[25]  Johannes J. Letzkus,et al.  Amygdala interneuron subtypes control fear learning through disinhibition , 2014, Nature.

[26]  G. Richter-Levin,et al.  Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats , 2013, Proceedings of the National Academy of Sciences.

[27]  L. Acsády,et al.  Lateralization of observational fear learning at the cortical but not thalamic level in mice , 2012, Proceedings of the National Academy of Sciences.

[28]  Moriel Zelikowsky,et al.  Contextual Fear Memories Formed in the Absence of the Dorsal Hippocampus Decay Across Time , 2012, The Journal of Neuroscience.

[29]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[30]  N. Weinberger The medial geniculate, not the amygdala, as the root of auditory fear conditioning , 2011, Hearing Research.

[31]  K. Sätzler,et al.  Different Fear States Engage Distinct Networks within the Intercalated Cell Clusters of the Amygdala , 2011, The Journal of Neuroscience.

[32]  B. Sacchetti,et al.  Role of Secondary Sensory Cortices in Emotional Memory Storage and Retrieval in Rats , 2010, Science.

[33]  H. T. Blair,et al.  Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray , 2010, Nature Neuroscience.

[34]  D. Paré,et al.  Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. , 2010, Physiological reviews.

[35]  Joseph E. LeDoux,et al.  Hebbian Reverberations in Emotional Memory Micro Circuits , 2009, Front. Neurosci..

[36]  J. Moncho-Bogani,et al.  Unconditioned stimulus pathways to the amygdala: Effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala , 2008, Neuroscience.

[37]  Kay M. Tye,et al.  Rapid strengthening of thalamo-amygdala synapses mediates cue–reward learning , 2008, Nature.

[38]  S. Josselyn,et al.  Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. , 2008, Learning & memory.

[39]  A. Walf,et al.  The use of the elevated plus maze as an assay of anxiety-related behavior in rodents , 2007, Nature Protocols.

[40]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[41]  J. Haller,et al.  Behavioral specificity of non-genomic glucocorticoid effects in rats: Effects on risk assessment in the elevated plus-maze and the open-field , 2005, Hormones and Behavior.

[42]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[43]  A. King,et al.  The superior colliculus , 2004, Current Biology.

[44]  Sergio Tufik,et al.  Afferent pain pathways: a neuroanatomical review , 2004, Brain Research.

[45]  Joseph E LeDoux,et al.  Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning , 2004, Neuroscience.

[46]  H. T. Blair,et al.  Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. , 2001, Learning & memory.

[47]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[48]  Joseph E LeDoux,et al.  Afferents from the auditory thalamus synapse on inhibitory interneurons in the lateral nucleus of the amygdala , 2000, Synapse.

[49]  R. Guillery,et al.  Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body , 2000, Neuroscience.

[50]  R. Dolan,et al.  A subcortical pathway to the right amygdala mediating "unseen" fear. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Joseph E LeDoux,et al.  Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. , 1999, Journal of neurophysiology.

[52]  H. Pape,et al.  Direct synaptic connections of axons from superior colliculus with identified thalamo‐amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala , 1999, The Journal of comparative neurology.

[53]  Joseph E LeDoux,et al.  Fear Conditioning Enhances Different Temporal Components of Tone-Evoked Spike Trains in Auditory Cortex and Lateral Amygdala , 1997, Neuron.

[54]  A. Holmes,et al.  Animal models of anxiety: an ethological perspective. , 1997, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[55]  Joseph E LeDoux,et al.  Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. , 1996, Learning & memory.

[56]  Joseph E LeDoux,et al.  Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: Parallel recordings in the freely behaving rat , 1995, Neuron.

[57]  Michael Davis,et al.  Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear- potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Joseph E LeDoux Emotion, memory and the brain. , 1994, Scientific American.

[59]  Joseph E LeDoux,et al.  Response properties of single units in areas of rat auditory thalamus that project to the amygdala , 1994, Experimental Brain Research.

[60]  Larry W. Swanson,et al.  Brain Maps: Structure of the Rat Brain , 1992 .

[61]  Joseph E LeDoux,et al.  Topographic organization of neurons in the acoustic thalamus that project to the amygdala , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Joseph E LeDoux,et al.  Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat , 1987, The Journal of comparative neurology.

[63]  J. Coleman,et al.  Sources of projections to subdivisions of the inferior colliculus in the rat , 1987, The Journal of comparative neurology.

[64]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[65]  B. Sessle,et al.  Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. , 1984, Journal of neurophysiology.

[66]  A Sakaguchi,et al.  Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  P. Greengard,et al.  in the forebrain , 2016 .

[68]  C. Gauriau,et al.  A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: The forebrain , 2004, The Journal of comparative neurology.