Progress and prospects of GaN-based VCSEL from near UV to green emission

Abstract GaN is a great material for making optoelectronic devices in the blue, blue-violet and green bands. Vertical-cavity surface-emitting lasers (VCSELs) have many advantages including small footprint, circular symmetry of output beam, two-dimensional scalability and/or addressability, surface-mount packaging, good price-performance ratio, and simple optics/alignment for output coupling. In this paper, we would like to (1) Review the design and fabrication of GaN-based VCSELs including some technology challenges, (2) Discuss the design and metalorganic chemical vapor deposition (MOCVD) growth of electrically pumped blue VCSELs and (3) Demonstrate world first green VCSEL using quantum dots (QDs) active region to overcome the 'green gap'.

[1]  N. Grandjean,et al.  Critical thickness of GaN on AlN: impact of growth temperature and dislocation density , 2017 .

[2]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[3]  M. Abgrall,et al.  Absolute Frequency Measurement of the 40Ca+ 4s 2S1/2 -3d2D5/2 Clock Transition , 2008, 0806.1414.

[4]  Joel R. Wendt,et al.  Optical properties of two‐dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors , 1994 .

[5]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[6]  M. Takamoto,et al.  Trapping of neutral mercury atoms and prospects for optical lattice clocks. , 2007, Physical review letters.

[7]  F. Kish,et al.  A VERTICAL CAVITY LIGHT EMITTING INGAN QUANTUM WELL HETEROSTRUCTURE , 1999 .

[8]  Shing-chung Wang,et al.  High-temperature operation of GaN-based vertical-cavity surface-emitting lasers , 2017 .

[9]  Mingming Tan,et al.  Visible light communications using a directly modulated 422 nm GaN laser diode. , 2013, Optics letters.

[10]  S. Nakamura,et al.  Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes , 1996 .

[11]  A. Nurmikko,et al.  Near ultraviolet optically pumped vertical cavity laser , 2000 .

[12]  M. Dawson,et al.  High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array , 2010, IEEE Photonics Technology Letters.

[13]  S. Denbaars,et al.  Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture , 2015 .

[14]  Jeong Yong Lee,et al.  Characterization of Pit Formation in III-Nitrides Grown by Metalorganic Chemical Mavor Deposition , 2002 .

[15]  High efficiency GaN‐based LEDs using plasma selective treatment of p‐GaN surface , 2003 .

[16]  Christoph Affolderbach,et al.  Microwave frequency reference based on VCSEL-driven dark-line resonances in Cs vapor , 2000, Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052).

[17]  Yi’an Yin,et al.  Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer , 2011 .

[18]  S. Chang,et al.  GaN-Based LEDs With a Chirped Multiquantum Barrier Structure , 2012, IEEE Photonics Technology Letters.

[19]  R. Michalzik VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers , 2012 .

[20]  H. Kuo,et al.  Crack-free GaN∕AlN distributed Bragg reflectors incorporated with GaN∕AlN superlattices grown by metalorganic chemical vapor deposition , 2006 .

[21]  F. Kish,et al.  A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser , 2000 .

[22]  Oliver Bimber,et al.  Displays: Fundamentals and Applications , 2011 .

[23]  Werner Wegscheider,et al.  Microscopic analysis of optical gain in InGaN/GaN quantum wells , 2006 .

[24]  P. Gill,et al.  Hertz-Level Measurement of the Optical Clock Frequency in a Single 88Sr+ Ion , 2004, Science.

[25]  Haiying Shen,et al.  TOP , 2019, Encyclopedia of Autism Spectrum Disorders.

[26]  Hongyang Wang,et al.  Effects of matrix layer composition on the structural and optical properties of self-organized InGaN quantum dots , 2013 .

[27]  Zach DeVito,et al.  Opt , 2017 .

[28]  Hui Yang,et al.  Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. , 2016, Optics express.

[29]  H. Gotoh,et al.  Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors , 2003 .

[30]  Timothy D. Wilkinson,et al.  CLEO: Science and Innovations , 2012, CLEO 2012.

[31]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  D. Bour,et al.  Nitride-based semiconductors for blue and green light-emitting devices , 1997, Nature.

[34]  James S. Speck,et al.  Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture , 2016 .

[35]  Dong-Yul Lee,et al.  Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes , 2009 .

[36]  H. Kuo,et al.  Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature , 2010 .

[37]  Jonathan J. Wierer,et al.  Advantages of III‐nitride laser diodes in solid‐state lighting , 2015 .

[38]  Yu Peng,et al.  Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN∕GaN and Ta2O5∕SiO2 distributed Bragg reflector , 2005 .

[39]  Tuan Vo-Dinh,et al.  Laser‐induced fluorescence spectroscopy for in vivo diagnosis of non‐melanoma skin cancers , 2002, Lasers in surgery and medicine.

[40]  J. Carlin,et al.  Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate , 2012 .

[41]  S. Denbaars,et al.  The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes , 2012 .

[42]  S. Denbaars,et al.  4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. , 2015, Optics express.

[43]  K. Yamanaka,et al.  Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature , 2012, IEEE Journal of Quantum Electronics.

[44]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[45]  Theeradetch Detchprohm,et al.  Relaxation Mechanism of Thermal Stresses in the Heterostructure of GaN Grown on Sapphire by Vapor Phase Epitaxy , 1993 .

[46]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[47]  P. Bhattacharya,et al.  InGaN/GaN Quantum Dot Red $(\lambda=630~{\rm nm})$ Laser , 2013, IEEE Journal of Quantum Electronics.

[48]  L. Cai,et al.  Blue-Violet Lasing of Optically Pumped GaN-Based Vertical Cavity Surface-Emitting Laser With Dielectric Distributed Bragg Reflectors , 2009, Journal of Lightwave Technology.

[49]  Marc Ilegems,et al.  Recent Progress in the Growth of Highly Reflective Nitride-Based Distributed Bragg Reflectors and Their Use in Microcavities , 2005 .

[50]  Mathew C. Schmidt,et al.  Gain comparison in polar and nonpolarsemipolar gallium-nitride-based laser diodes , 2012 .

[51]  S. Denbaars,et al.  Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching , 2014 .

[52]  Su-hee Chae,et al.  Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme , 2003 .

[53]  P. Bhattacharya,et al.  A InGaN/GaN quantum dot green (λ=524 nm) laser , 2011 .

[54]  M. Dawson,et al.  Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array , 2012, Journal of Lightwave Technology.

[55]  S. C. Wang,et al.  Design and fabrication of a InGaN vertical-cavity surface-emitting laser with a composition-graded electron-blocking layer , 2014 .

[56]  Jiangyong Zhang,et al.  Blue-green optically pumped GaN-based vertical cavity surface emitting laser , 2008 .

[57]  Jeffrey Y. Tsao,et al.  The potential of III‐nitride laser diodes for solid‐state lighting , 2014 .

[58]  P. Lagoudakis,et al.  Blue lasing at room temperature in an optically pumped lattice-matched AlInN=GaN VCSEL structure , 2007 .

[59]  O. Brandt,et al.  Crack-free and conductive Si-doped AlN∕GaN distributed Bragg reflectors grown on 6H-SiC(0001) , 2004 .

[60]  Rick E. Sneed,et al.  In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices , 1995, Lasers in surgery and medicine.

[61]  F. Ren,et al.  Electrical effects of plasma damage in p-GaN , 1999 .

[62]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[63]  S N Bagayev,et al.  Absolute frequency measurement of the In+ clock transition with a mode-locked laser. , 2000, Optics letters.

[64]  H. Kuo,et al.  CW lasing of current injection blue GaN-based vertical cavity surface emitting laser , 2008 .

[65]  H. Kuo,et al.  Room-Temperature Operation of Optically Pumped Blue-Violet GaN-Based Vertical-Cavity Surface-Emitting Lasers Fabricated by Laser Lift-Off , 2006 .

[66]  D. Bimberg,et al.  Progress in Epitaxial Growth and Performance of Quantum Dot and Quantum Wire Lasers , 2008, Journal of Lightwave Technology.

[67]  Catalano,et al.  Room temperature lasing at blue wavelengths in gallium nitride microcavities , 1999, Science.

[68]  Hao-Chung Kuo,et al.  Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer , 2010 .

[69]  Baoping Zhang,et al.  Efficient hole transport in asymmetric coupled InGaN multiple quantum wells , 2009 .

[70]  William S. Wong,et al.  Damage-free separation of GaN thin films from sapphire substrates , 1998 .

[71]  S. Denbaars,et al.  Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact , 2015 .

[72]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[73]  Theodore D. Moustakas,et al.  High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy , 2000 .

[74]  Pleun Maaskant,et al.  Carrier distribution in InGaN/GaN tricolor multiple quantum well light emitting diodes , 2009 .

[75]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[76]  J. Carlin,et al.  High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN , 2003 .

[77]  H. Kuo,et al.  The lasing characteristics of GaN-based vertical-cavity surface-emitting laser with AlN-GaN and Ta/sub 2/O/sub 5/--SiO/sub 2/ distributed Bragg reflectors , 2006, IEEE Photonics Technology Letters.

[78]  H. Kuo,et al.  Improved carrier injection in GaN-based VCSEL via AlGaN/GaN multiple quantum barrier electron blocking layer. , 2015, Optics express.

[79]  H. Kuo,et al.  Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers , 2006 .

[80]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[81]  P. S. Yeh,et al.  GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle , 2016 .

[82]  H. Akiyama,et al.  Low Threshold Lasing of GaN-Based VCSELs With Sub-Nanometer Roughness Polishing , 2013, IEEE Photonics Technology Letters.

[83]  Baoping Zhang,et al.  Low threshold lasing of GaN-based vertical cavity surface emitting lasers with an asymmetric coupled quantum well active region , 2008 .

[84]  Andrew G. Glen,et al.  APPL , 2001 .

[85]  Baoping Zhang,et al.  Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers , 2014 .