Functional Genomics Tools for Haemonchus contortus and Lessons From Other Helminths.

[1]  N. D. Warnock,et al.  RNA interference in adult Ascaris suum – an opportunity for the development of a functional genomics platform that supports organism-, tissue- and cell-based biology in a nematode parasite , 2015, International journal for parasitology.

[2]  T. McNeilly,et al.  Application of small RNA technology for improved control of parasitic helminths , 2015, Veterinary parasitology.

[3]  R. Burton,et al.  Reverse genetics in the tide pool: knock‐down of target gene expression via RNA interference in the copepod Tigriopus californicus , 2015, Molecular ecology resources.

[4]  Ian M. Carruthers,et al.  Application of RNAi to Genomic Drug Target Validation in Schistosomes , 2015, PLoS neglected tropical diseases.

[5]  J. Dalton,et al.  The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution , 2015, Genome Biology.

[6]  B. Meyer,et al.  Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design , 2015, Genetics.

[7]  Tushar K. Dutta,et al.  The status of RNAi-based transgenic research in plant nematology , 2015, Front. Microbiol..

[8]  N. Young,et al.  Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo , 2014, Nature Communications.

[9]  P. Brophy,et al.  RNAi Dynamics in Juvenile Fasciola spp. Liver Flukes Reveals the Persistence of Gene Silencing In Vitro , 2014, PLoS neglected tropical diseases.

[10]  Simon L. Bullock,et al.  Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila , 2014, Proceedings of the National Academy of Sciences.

[11]  J. Wasmuth Realizing the promise of parasite genomics. , 2014, Trends in parasitology.

[12]  M. Viney The failure of genomics in biology. , 2014, Trends in parasitology.

[13]  T. Day,et al.  Functional Characterization of a Novel Family of Acetylcholine-Gated Chloride Channels in Schistosoma mansoni , 2014, PLoS pathogens.

[14]  C. Mello,et al.  A Co-CRISPR Strategy for Efficient Genome Editing in Caenorhabditis elegans , 2014, Genetics.

[15]  H. Kim,et al.  A guide to genome engineering with programmable nucleases , 2014, Nature Reviews Genetics.

[16]  Jian‐Kang Zhu,et al.  Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis , 2014, Proceedings of the National Academy of Sciences.

[17]  P. Ribeiro,et al.  Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement , 2014, PLoS pathogens.

[18]  B. Whitelaw,et al.  Marker genes for activation of the RNA interference (RNAi) pathway in the free-living nematode Caenorhabditis elegans and RNAi development in the ovine nematode Teladorsagia circumcincta , 2013, Journal of Helminthology.

[19]  Dana Carroll,et al.  Heritable Gene Knockout in Caenorhabditis elegans by Direct Injection of Cas9–sgRNA Ribonucleoproteins , 2013, Genetics.

[20]  Mike Boxem,et al.  CRISPR/Cas9-Targeted Mutagenesis in Caenorhabditis elegans , 2013, Genetics.

[21]  M. de Bono,et al.  Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination , 2013, Nucleic acids research.

[22]  N. Holroyd,et al.  The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery , 2013, Genome Biology.

[23]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[24]  Andrew R. Bassett,et al.  Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System , 2013, Cell reports.

[25]  Emmitt R. Jolly,et al.  Polyethyleneimine Mediated DNA Transfection in Schistosome Parasites and Regulation of the WNT Signaling Pathway by a Dominant-Negative SmMef2 , 2013, PLoS neglected tropical diseases.

[26]  Young-Seok Cho,et al.  Recent Developments in Nanoparticle-Based siRNA Delivery for Cancer Therapy , 2013, BioMed research international.

[27]  David J. Forsthoefel,et al.  RNA interference by feeding in vitro–synthesized double‐stranded RNA to planarians: Methodology and dynamics , 2013, Developmental dynamics : an official publication of the American Association of Anatomists.

[28]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[29]  Xiaojun Zhu,et al.  Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos , 2013, Cell Research.

[30]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[31]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[32]  David J. Forsthoefel,et al.  An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. , 2012, Developmental cell.

[33]  E. Pearce,et al.  Transposon-mediated Chromosomal Integration of Transgenes in the Parasitic Nematode Strongyloides ratti and Establishment of Stable Transgenic Lines , 2012, PLoS pathogens.

[34]  Enzo Di Fabrizio,et al.  Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy , 2012, International journal of nanomedicine.

[35]  S. C. Huang,et al.  The development of RNA interference (RNAi) in gastrointestinal nematodes , 2012, Parasitology.

[36]  Peter W. Reddien,et al.  Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. , 2012, Cell stem cell.

[37]  B. Hines,et al.  Silencing of essential genes by RNA interference in Haemonchus contortus , 2012, Parasitology.

[38]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[39]  P. Urwin,et al.  RNA interference in plant parasitic nematodes: a summary of the current status , 2012, Parasitology.

[40]  M. Berriman,et al.  Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel , 2012, BMC Genomics.

[41]  S. Beckmann,et al.  Paving the way for transgenic schistosomes , 2011, Parasitology.

[42]  J. Lok Nucleic acid transfection and transgenesis in parasitic nematodes , 2011, Parasitology.

[43]  P. Brindley,et al.  Genetic manipulation of schistosomes – progress with integration competent vectors , 2011, Parasitology.

[44]  M. Mitreva,et al.  RNAi Effector Diversity in Nematodes , 2011, PLoS neglected tropical diseases.

[45]  Leonard D. Goldstein,et al.  Natural and Experimental Infection of Caenorhabditis Nematodes by Novel Viruses Related to Nodaviruses , 2011, PLoS biology.

[46]  P. Skelly,et al.  RNA interference in schistosomes: machinery and methodology , 2009, Parasitology.

[47]  A. von Mikecz,et al.  In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence , 2009, PloS one.

[48]  P. Abad,et al.  RNAi and functional genomics in plant parasitic nematodes. , 2009, Annual review of phytopathology.

[49]  J. Lok Transgenesis in parasitic nematodes: building a better array. , 2009, Trends in parasitology.

[50]  G. Franco,et al.  Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference , 2009, PLoS neglected tropical diseases.

[51]  Wei Huang,et al.  The Schistosoma japonicum genome reveals features of host–parasite interplay , 2009, Nature.

[52]  John P. Overington,et al.  The genome of the blood fluke Schistosoma mansoni , 2009, Nature.

[53]  R. Sommer,et al.  Molecular cloning of a dominant roller mutant and establishment of DNA‐mediated transformation in the nematode Pristionchus pacificus , 2009, Genesis.

[54]  J. Lok,et al.  Morphogenesis of Strongyloides stercoralis Infective Larvae Requires the DAF-16 Ortholog FKTF-1 , 2009, PLoS pathogens.

[55]  M. Félix RNA interference in nematodes and the chance that favored Sydney Brenner , 2008, Journal of biology.

[56]  L. Timmons,et al.  Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7 , 2008, Genetics.

[57]  M. Sundaram,et al.  Strongyloides stercoralis: cell- and tissue-specific transgene expression and co-transformation with vector constructs incorporating a common multifunctional 3' UTR. , 2008, Experimental parasitology.

[58]  E. Pearce,et al.  piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[59]  C. Fleming,et al.  flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[60]  Andrew Fire,et al.  Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans , 2007, Science.

[61]  P. Geldhof,et al.  Efficacy and specificity of RNA interference in larval life-stages of Ostertagia ostertagi , 2006, Parasitology.

[62]  P. O’Farrell,et al.  The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing , 2006, Nature Cell Biology.

[63]  Linda A. Murray,et al.  Testing the efficacy of RNA interference in Haemonchus contortus. , 2006, International journal for parasitology.

[64]  M. Sundaram,et al.  Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements. , 2006, International journal for parasitology.

[65]  G. Saunders,et al.  RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects , 2006, Parasitology.

[66]  C. Shoemaker,et al.  Heritable transgenesis of Parastrongyloides trichosuri: a nematode parasite of mammals. , 2006, International journal for parasitology.

[67]  C. Shoemaker,et al.  Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. , 2005, International journal for parasitology.

[68]  P. Abad,et al.  Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. , 2005, Molecular plant-microbe interactions : MPMI.

[69]  Manabu Yamada,et al.  Pyrophosphatase of the Roundworm Ascaris suum Plays an Essential Role in the Worm's Molting and Development , 2005, Infection and Immunity.

[70]  C. Mello,et al.  RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans , 2005, Nucleic acids research.

[71]  Jing Liu,et al.  RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvulus confirmed their essential function during L3 molting. , 2004, Molecular and biochemical parasitology.

[72]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[73]  C. Mello,et al.  Inducible systemic RNA silencing in Caenorhabditis elegans. , 2003, Molecular biology of the cell.

[74]  M. Blaxter,et al.  Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. , 2003, Molecular and biochemical parasitology.

[75]  P. Urwin,et al.  Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. , 2002, Molecular plant-microbe interactions : MPMI.

[76]  M. Selkirk,et al.  Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. , 2002, Molecular and biochemical parasitology.

[77]  J. Appleton,et al.  Molting, Ecdysis, and Reproduction of Trichinella spiralis Are Supported In Vitro by Intestinal Epithelial Cells , 2002, Infection and Immunity.

[78]  T. Unnasch,et al.  Brugia malayi: transient transfection by microinjection and particle bombardment. , 2002, Experimental parasitology.

[79]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[80]  Elizabeth Casey,et al.  Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. , 2001, Genetics.

[81]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[82]  R. Davis,et al.  Transient expression of DNA and RNA in parasitic helminths by using particle bombardment. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[83]  C. Mello,et al.  RNAi in C. elegans: Soaking in the Genome Sequence , 1998, Science.

[84]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[85]  Eric Glover French inquiry to look into thesis fraud , 1998, Nature.

[86]  W. G. Kelly,et al.  Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. , 1997, Genetics.

[87]  E. Munn,et al.  Purification and evaluation of the integral membrane protein H11 as a protective antigen against Haemonchus contortus. , 1993, International journal for parasitology.

[88]  R. Sommer,et al.  Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus , 2014, Development Genes and Evolution.

[89]  I. Birol,et al.  ARTICLE TYPE , 2012 .

[90]  C. Britton,et al.  Factors affecting susceptibility to RNA interference in Haemonchus contortus and in vivo silencing of an H11 aminopeptidase gene. , 2011, International journal for parasitology.

[91]  A. Kotze,et al.  RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. , 2006, Molecular and biochemical parasitology.