This paper describes the Visible Wave Front Sensor (visible WFS) for the VLT Nasmith Adaptive Optics system (NAOS). This Shack-Hartman-based wave front sensor instrument includes within a continuous flow liquid nitrogen cryostat: (1) a low noise fast readout CCD camera controlled by the ESO new generation CCD controller FIERA. The readout noise of this system is 3 e- at 50 kilopixel/sec/port, and is only limited by the CCD intrinsic noise. FIERA proposes remotely controlled readout modes with optional binning, windowing and flexible integration time. (2) two remotely exchangeable micro-lens arrays focusing the analyzed wave front directly on the CCD sensitive surface. The wave front sensor includes also its own atmospheric dispersion compensator. Due to the continuous rotation of the NAOS adapter, the mechanical stiffness of the visible wave front sensor must be very high not to disturb the loop operation (no more than 0.1 micrometer of lenslet array displacement compared to the CCD location over a 30 degree rotation angle of the instrument). The following simulations and tests are described: (1) simulation results providing an estimation of the NAOS maximum operating magnitude, (2) camera optimization, (3) mechanical stiffness measurements.