Variational Denoising for Variational Quantum Eigensolver

The variational quantum eigensolver (VQE) is a hybrid algorithm that has the potential to provide a quantum advantage in practical chemistry problems that are currently intractable on classical computers. VQE trains parameterized quantum circuits using a classical optimizer to approximate the eigenvalues and eigenstates of a given Hamiltonian. However, VQE faces challenges in task-specific design and machine-specific architecture, particularly when running on noisy quantum devices. This can have a negative impact on its trainability, accuracy, and efficiency, resulting in noisy quantum data. We propose variational denoising, an unsupervised learning method that employs a parameterized quantum neural network to improve the solution of VQE by learning from noisy VQE outputs. Our approach can significantly decrease energy estimation errors and increase fidelities with ground states compared to noisy input data for the H2 and LiH molecular Hamiltonians, and surprisingly only requires noisy data for training. Variational denoising can be integrated into quantum hardware, increasing its versatility as an end-to-end quantum processing for quantum data.

[1]  M. Ansari,et al.  Error mitigation of entangled states using brainbox quantum autoencoders , 2023, ArXiv.

[2]  K. Mitarai,et al.  VQE-generated Quantum Circuit Dataset for Machine Learning , 2023, 2302.09751.

[3]  Eric R. Anschuetz,et al.  Quantum variational algorithms are swamped with traps , 2022, Nature communications.

[4]  George H. Booth,et al.  The Variational Quantum Eigensolver: A review of methods and best practices , 2021, Physics Reports.

[5]  Eric R. Anschuetz,et al.  Enhancing Generative Models via Quantum Correlations , 2021, Physical Review X.

[6]  Jérôme F Gonthier,et al.  Measurements as a roadblock to near-term practical quantum advantage in chemistry: Resource analysis , 2020, Physical Review Research.

[7]  Patrick J. Coles,et al.  Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, Physical review letters.

[8]  M. Cerezo,et al.  Entangled Datasets for Quantum Machine Learning , 2021, ArXiv.

[9]  Hao Li,et al.  Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. , 2021, Physical review letters.

[10]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[11]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[12]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[13]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[14]  K. Temme,et al.  A rigorous and robust quantum speed-up in supervised machine learning , 2020, Nature Physics.

[15]  Lior Horesh,et al.  Denoising quantum states with Quantum Autoencoders - Theory and Applications , 2020, ArXiv.

[16]  T. Osborne,et al.  Training deep quantum neural networks , 2020, Nature Communications.

[17]  P. Feldmann,et al.  Quantum Autoencoders to Denoise Quantum Data. , 2019, Physical review letters.

[18]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[19]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[20]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[21]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[22]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[23]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[24]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[25]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[26]  J. Spall Stochastic optimization and the simultaneous perturbation method , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).