Bayesian Method for the Generalized Exponential Model Using Fuzzy Data

This paper focuses on Bayesian inference for the parameters of the generalized exponential model under asymmetric and symmetric loss functions when the observations are described in terms of fuzzy numbers. First, a generalized likelihood function based on fuzzy data is derived. Then, considering general entropy, linear exponential and squared error loss functions, the Bayes estimates of the parameters are obtained. Since Bayes estimates could not be expressed in closed forms, Metropolis–Hasting samplers are used to compute the approximate Bayes estimates. For comparison purposes, the maximum likelihood estimates of the parameters are also computed. The proposed inferences are illustrated using three real-world examples. The numerical simulation results demonstrate the superiority of the Bayesian method over the maximum likelihood procedure.

[1]  A. Srivastava,et al.  Parameter Estimation of Marshall-Olkin Extended Exponential distribution using Markov Chain Monte Carlo Method for Informative set of priors , 2011 .

[2]  R. Viertl Statistical Methods for Fuzzy Data , 2011 .

[3]  A. Shafay,et al.  Estimation of generalized exponential distribution based on an adaptive progressively type-II censored sample , 2017 .

[4]  U. Singh,et al.  Statistical Inferences of Type-II Progressively Hybrid Censored Fuzzy Data with Rayleigh Distribution , 2018 .

[5]  M. H. Alamatsaz,et al.  A Discrete Analog of the Generalized Exponential Distribution , 2012 .

[6]  Zhi-gang Su,et al.  Likelihood-based multivariate fuzzy model with linear inequality constraints , 2014, J. Intell. Fuzzy Syst..

[7]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[8]  Thierry Denœux Maximum likelihood estimation from fuzzy data using the EM algorithm , 2011 .

[9]  Mohammad Z. Raqab,et al.  Estimation of P(Y < X) for Weibull Distribution Under Progressive Type-II Censoring , 2013 .

[10]  Bayesian estimation of generalized exponential distribution under progressive first failure censored sample , 2015 .

[11]  Reinhard Viertl,et al.  Univariate statistical analysis with fuzzy data , 2006, Comput. Stat. Data Anal..

[12]  Mansour Saraj,et al.  Inference for the Weibull Distribution Based on Fuzzy Data , 2013 .

[13]  A. Pak Statistical inference for the parameter of Lindley distribution based on fuzzy data , 2017 .

[14]  U. Singh,et al.  Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data , 2017 .

[15]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[16]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[17]  Sanku Dey,et al.  Statistical Inference for the power Lindley model based on record values and inter-record times , 2019, J. Comput. Appl. Math..

[18]  Przemysław Grzegorzewski,et al.  COMPUTING WITH WORDS AND LIFE DATA , 2002 .

[19]  Debasis Kundu,et al.  Generalized exponential distribution: Bayesian estimations , 2008, Comput. Stat. Data Anal..

[20]  M. H. Alamatsaz,et al.  Discrete generalized exponential distribution of a second type , 2013 .

[21]  Manoj Chacko,et al.  Inference Based on k-Record Values from Generalized Exponential Distribution , 2018 .

[22]  Shahram Yaghoobzadeh Shahrastani Estimating E-bayesian and hierarchical bayesian of scalar parameter of gompertz distribution under type II censoring schemes based on fuzzy data , 2019 .

[23]  S. Dey BAYESIAN ESTIMATION OF THE SHAPE PARAMETER OF THE GENERALISED EXPONENTIAL DISTRIBUTION UNDER DIFFERENT LOSS FUNCTIONS , 2010 .

[24]  R. Viertl,et al.  On the estimation of parameters, survival functions, and hazard rates based on fuzzy life time data , 2017 .

[25]  O. Chatrabgoun,et al.  Estimating the parameters of lifetime distributions under progressively Type-II censoring from fuzzy data , 2016 .

[26]  A. Pak,et al.  On Estimation of Rayleigh Scale Parameter under Doubly Type-II Censoring from Imprecise Data , 2021, Journal of Data Science.

[27]  Reinhard Viertl,et al.  Statistical Methods for Fuzzy Data: Viertl/Statistical Methods for Fuzzy Data , 2011 .

[28]  Mansour Saraj,et al.  Inferences on the Competing Risk Reliability Problem for Exponential Distribution Based on Fuzzy Data , 2014, IEEE Transactions on Reliability.

[29]  Nayereh Bagheri Khoolenjani,et al.  Estimating the parameter of Exponential distribution under Type-II censoring from fuzzy data , 2016, J. Stat. Theory Appl..

[30]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[31]  Y. Tripathi,et al.  Estimating the parameters of a Burr distribution under progressive type II censoring , 2012 .

[32]  Zai-zai Yan,et al.  Bayesian estimation for generalized exponential distribution based on progressive type-I interval censoring , 2013 .

[33]  Bayesian Estimations with Fuzzy Data to Estimation Inverse Rayleigh Scale Parameter , 2019, Open Journal of Applied Sciences.

[34]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[35]  Enrico Zio,et al.  A fuzzy expectation maximization based method for estimating the parameters of a multi-state degradation model from imprecise maintenance outcomes , 2017 .

[36]  Statistical inference for the parameter of the inverse Lindley distribution based on imprecise data with simulation study , 2019, International Journal of Contemporary Mathematical Sciences.

[37]  A. Pak,et al.  Estimating the Parameter of Exponential Distribution under Type II Censoring From Fuzzy Data , 2016 .

[38]  H. Zhu,et al.  Bayesian estimation in forest surveys when samples or prior information are fuzzy , 1996, Fuzzy Sets Syst..

[39]  L. Zadeh Probability measures of Fuzzy events , 1968 .