Favorable outcome of NUTM1-rearranged infant and pediatric B cell precursor acute lymphoblastic leukemia in a collaborative international study
暂无分享,去创建一个
R. Stam | M. D. Den Boer | R. Pieters | H. Cavé | M. Valsecchi | A. Attarbaschi | G. Escherich | A. Möricke | J. Boer | Chi-kong Li | T. Imamura | C. Harrison | C. Schwab | A. Bergmann | G. Cazzaniga | S. Strehl | T. Lammens | A. Pastorczak | Enrique Carrillo de Santa Pau | F. Lambert | R. Sutton | P. de Lorenzo | M. Žaliová | K. Ohki | Chloé Arfeuille | Femke M. Hormann | E. Carrillo de Santa Pau | Ž. Antić | Tanja A. Grüber | Steve Hoffmann | C. Arfeuille | M. D. den Boer
[1] S. Miyano,et al. Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia. , 2020, Blood advances.
[2] P. Gendron,et al. Cryptic recurrent ACIN1‐NUTM1 fusions in non‐KMT2A‐rearranged infant acute lymphoblastic leukemia , 2020, Genes, chromosomes & cancer.
[3] R. Stam,et al. NUTM1 is a recurrent fusion gene partner in B-cell precursor acute lymphoblastic leukemia associated with increased expression of genes on chromosome band 10p12.31-12.2 , 2019, Haematologica.
[4] R. Pieters,et al. Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[5] Ashley D. Hill,et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia , 2019, Nature Genetics.
[6] C. Pui,et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases , 2018, Proceedings of the National Academy of Sciences.
[7] B. Schäfer,et al. Reduced-Intensity Delayed Intensification in Standard-Risk Pediatric Acute Lymphoblastic Leukemia Defined by Undetectable Minimal Residual Disease: Results of an International Randomized Trial (AIEOP-BFM ALL 2000). , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[8] A. Valencia,et al. Automatic identification of informative regions with epigenomic changes associated to hematopoiesis , 2016, bioRxiv.
[9] Guido Marcucci,et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia , 2016, Nature Communications.
[10] R. Pieters,et al. Successful Therapy Reduction and Intensification for Childhood Acute Lymphoblastic Leukemia Based on Minimal Residual Disease Monitoring: Study ALL10 From the Dutch Childhood Oncology Group. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[11] Cheng Cheng,et al. The landscape of somatic mutations in Infant MLL rearranged acute lymphoblastic leukemias , 2015, Nature Genetics.
[12] R. Pieters,et al. Cytogenetics and outcome of infants with acute lymphoblastic leukemia and absence of MLL rearrangements , 2013, Leukemia.
[13] H. Stunnenberg,et al. BLUEPRINT: mapping human blood cell epigenomes , 2013, Haematologica.
[14] Manolis Kellis,et al. ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.
[15] H. Kimura,et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains , 2010, The EMBO journal.
[16] R. Pieters,et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial , 2007, The Lancet.