Unbounded Utility for Savage's "Foundations of Statistics, " and Other Models

A general procedure for extending finite-dimensional "additive-like" representations for binary relations to infinite-dimensional "integral-like" representations is developed by means of a condition called truncation-continuity. The restriction of boundedness of utility, met throughout the literature, can now be dispensed with, and for instance normal distributions, or any other distribution with finite first moment, can be incorporated. Classical representation results of expected utility, such as Savage 1954, von Neumann and Morgenstern 1944, Anscombe and Aumann 1963, de Finetti 1937, and many others, can now be extended. The results are generalized to Schmeidler's 1989 approach with nonadditive measures and Choquet integrals, and Quiggin's 1982 rank-dependent utility. The different approaches have been brought together in this paper to bring to the fore the unity in the extension process.

[1]  K. Menger,et al.  Das Unsicherheitsmoment in der Wertlehre , 1934 .

[2]  M. Machina "Expected Utility" Analysis without the Independence Axiom , 1982 .

[3]  G. Choquet Theory of capacities , 1954 .

[4]  P. Wakker Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .

[5]  M. Machina Choice under Uncertainty: Problems Solved and Unsolved , 1987 .

[6]  J. Quiggin A theory of anticipated utility , 1982 .

[7]  King-Tim Mak,et al.  Coherent Continuous Systems and the Generalized Functional Equation of Associativity , 1987, Math. Oper. Res..

[8]  T. Koopmans,et al.  Two papers on the representation of preference orderings : representation of preference orderings with independent components of consumption, and, Representation of preference orderings over time , 1972 .

[9]  Lars Tyge Nielsen Unbounded expected utility and continuity , 1984 .

[10]  Yutaka Nakamura,et al.  Multisymmetric structures and non-expected utility , 1992 .

[11]  Jean-Michel Grandmont,et al.  Continuity properties of a von Neumann-Morgenstern utility , 1972 .

[12]  Lloyd S. Shapley The St. Petersburg paradox: A con games? , 1977 .

[13]  R. Aumann UTILITY THEORY WITHOUT THE COMPLETENESS AXIOM , 1962 .

[14]  Larry G. Epstein,et al.  Axiomatic rank-dependent means , 1989 .

[15]  P. Samuelson St. Petersburg Paradoxes: Defanged, Dissected, and Historically Described , 1977 .

[16]  Claude Toulet,et al.  An Axiomatic Model of Unbounded Utility Functions , 1986, Math. Oper. Res..

[17]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[18]  von Weizäscker,et al.  Existence of Optimal Programs of Accumulation for an Infinite Time Horizon , 1965 .

[19]  D. Schmeidler Integral representation without additivity , 1986 .

[20]  David Lindley Scoring rules and the inevitability of probability , 1982 .

[21]  Peter P. Wakker,et al.  Agreeing Probability Measures for Comparative Probability Structures , 1981 .

[22]  Peter P. Wakker,et al.  Under stochastic dominance Choquet-expected utility and anticipated utility are identical , 1990 .

[23]  G W Tomlinson,et al.  Corrigenda , 1832, Brain Research.

[24]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[25]  Peter P. Wakker,et al.  A behavioral foundation for fuzzy measures , 1990 .

[26]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[27]  M. Allais,et al.  Fondements d'une theorie positive des choix comportant un risque et critique des postulats et axiomes de l'ecole americaine , 1959 .

[28]  Peter C. Fishburn,et al.  Nonlinear preference and utility theory , 1988 .

[29]  M. Degroot Optimal Statistical Decisions , 1970 .

[30]  M. Yaari,et al.  A controversial proposal concerning inequality measurement , 1988 .

[31]  Bruno de Finetti,et al.  Probability, induction and statistics , 1972 .

[32]  S. Lippman On Dynamic Programming with Unbounded Rewards , 1975 .

[33]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[34]  K. Arrow Essays in the theory of risk-bearing , 1958 .

[35]  Terence M. Ryan,et al.  The Use of Unbounded Utility Functions in Expected-Utility Maximization: Comment , 1974 .

[36]  Alain Chateauneuf,et al.  On the use of capacities in modeling uncertainty aversion and risk aversion , 1991 .

[37]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[38]  G. Gregory,et al.  Probability, Induction and Statistics , 1974 .

[39]  P. Wakker Continuous expected utility for arbitrary state spaces , 1985 .

[40]  I. Gilboa Expected utility with purely subjective non-additive probabilities , 1987 .

[41]  P. Wakker Characterizing optimism and pessimism directly through comonotonicity , 1990 .

[42]  Kenneth J. Arrow,et al.  The Use of Unbounded Utility Functions in Expected-Utility Maximization: Response , 1974 .

[43]  A. Tversky,et al.  An axiomatization of cumulative prospect theory , 1993 .

[44]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[45]  Jörgen W. Weibull,et al.  Discounted-Value Representations of Temporal Preferences , 1985, Math. Oper. Res..

[46]  J. Ledyard A Pseudo-Metric Space of Probability Measures and the Existence of Measurable Utility , 1971 .

[47]  C. Dellacherie Quelques Commentaires Sur Les Prolongements De Cafacites , 1971 .

[48]  L. Foldes,et al.  Expected Utility and Continuity , 1972 .

[49]  J. Jaffray Linear utility theory for belief functions , 1989 .

[50]  P. Wakker Continuous subjective expected utility with non-additive probabilities , 1989 .