Generalized Poisson autoregressive models for time series of counts

To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.

[1]  Lon-Mu Liu,et al.  Joint Estimation of Model Parameters and Outlier Effects in Time Series , 1993 .

[2]  Christian H. Weiß,et al.  Modelling time series of counts with overdispersion , 2009, Stat. Methods Appl..

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  Rong Chen THRESHOLD VARIABLE SELECTION IN OPEN‐LOOP THRESHOLD AUTOREGRESSIVE MODELS , 1995 .

[5]  Cathy W. S. Chen,et al.  Bayesian estimation of smoothly mixing time-varying parameter GARCH models , 2014, Comput. Stat. Data Anal..

[6]  Roman Liesenfeld,et al.  Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..

[7]  C. Lai,et al.  First‐order integer valued AR processes with zero inflated poisson innovations , 2012 .

[8]  S. Chib Estimation and comparison of multiple change-point models , 1998 .

[9]  Ram C. Tripathi,et al.  Inflated modified power series distributions with applications , 1995 .

[10]  Cathy W. S. Chen,et al.  Detection of structural breaks in a time-varying heteroskedastic regression model , 2011 .

[11]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[12]  Felix Famoye,et al.  Zero-Inflated Generalized Poisson Regression Model with an Application to Domestic Violence Data , 2021, Journal of Data Science.

[13]  Dag Tjøstheim,et al.  On weak dependence conditions for Poisson autoregressions , 2012 .

[14]  M. Bourguignon,et al.  A Poisson INAR(1) process with a seasonal structure , 2016 .

[15]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[16]  Fukang Zhu Zero-inflated Poisson and negative binomial integer-valued GARCH models , 2012 .

[17]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[18]  Cathy W. S. Chen,et al.  Detection of additive outliers in bilinear time series , 1997 .

[19]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[20]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[21]  Cathy W. S. Chen,et al.  Parameter change test for zero-inflated generalized Poisson autoregressive models , 2016 .

[22]  Jana Fruth,et al.  Retrospective Bayesian outlier detection in INGARCH series , 2015, Stat. Comput..

[23]  P. Consul,et al.  A Generalization of the Poisson Distribution , 1973 .

[24]  Cathy W. S. Chen,et al.  On a threshold heteroscedastic model , 2006 .

[25]  Senlin Wu,et al.  THRESHOLD VARIABLE DETERMINATION AND THRESHOLD VARIABLE DRIVEN SWITCHING AUTOREGRESSIVE MODELS , 2007 .

[26]  Cathy W. S. Chen,et al.  Falling and explosive, dormant, and rising markets via multiple-regime financial time series models , 2010 .

[27]  Wai Keung Li,et al.  Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.

[28]  Harry Joe,et al.  Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning , 2006 .

[29]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[30]  Fukang Zhu Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models , 2012 .

[31]  Robert C. Jung,et al.  Useful models for time series of counts or simply wrong ones? , 2011 .

[32]  Pushpa L. Gupta,et al.  Analysis of zero-adjusted count data , 1996 .