A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

[1]  E. Cackett,et al.  Different Accretion Heating of the Neutron Star Crust during Multiple Outbursts in MAXI J0556–332 , 2017, 1710.09365.

[2]  Nathalie Degenaar,et al.  Cooling of Accretion-Heated Neutron Stars , 2017, 1709.07034.

[3]  D. Walton,et al.  Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources , 2017, 1705.10297.

[4]  M. Mezcua,et al.  Observational evidence for intermediate-mass black holes , 2017, 1705.09667.

[5]  S. Gezari,et al.  Revisiting Optical Tidal Disruption Events with iPTF16axa , 2017, 1703.01299.

[6]  China.,et al.  Large decay of X-ray flux in 2XMM J123103.2+110648: evidence for a tidal disruption event , 2017, 1702.06956.

[7]  A. Loeb,et al.  An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae , 2017, Nature.

[8]  B. Zauderer,et al.  A likely decade-long sustained tidal disruption event , 2017, Nature Astronomy.

[9]  J. Tomsick,et al.  THE 2015 DECAY OF THE BLACK HOLE X-RAY BINARY V404 CYGNI: ROBUST DISK-JET COUPLING AND A SHARP TRANSITION INTO QUIESCENCE , 2016, 1611.02810.

[10]  J. Guillochon,et al.  New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths , 2016, 1611.02291.

[11]  Harvard,et al.  Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts , 2016, 1611.01386.

[12]  Joern Wilms,et al.  An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907 , 2016, Science.

[13]  R. Wijnands,et al.  A cold neutron star in the transient low-mass X-ray binary HETE J1900.1-2455 after 10 yr of active accretion , 2016, 1609.07485.

[14]  A. Comastri,et al.  Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds , 2016, Publications of the Astronomical Society of Australia.

[15]  C. Kochanek Tidal disruption event demographics , 2016 .

[16]  E. Cackett,et al.  THE THERMAL STATE OF KS 1731−260 AFTER 14.5 YEARS IN QUIESCENCE , 2016, 1608.03880.

[17]  R. Wijnands,et al.  Neutron star crust cooling in KS 1731-260: the influence of accretion outburst variability on the crustal temperature evolution , 2016, 1606.01923.

[18]  J. Strader,et al.  DISCOVERY OF THE CANDIDATE OFF-NUCLEAR ULTRASOFT HYPER-LUMINOUS X-RAY SOURCE 3XMM J141711.1+522541 , 2016, 1603.00455.

[19]  R. Wijnands,et al.  Constraining the properties of neutron star crusts with the transient low-mass X-ray binary Aql X-1 , 2015, 1512.06129.

[20]  A. J. van der Horst,et al.  A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li , 2015, Science.

[21]  P. Astier,et al.  RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP , 2015, 1511.00704.

[22]  S. Gezari,et al.  Flows of X-ray gas reveal the disruption of a star by a massive black hole , 2015, Nature.

[23]  S. Penny,et al.  NGC 3628-UCD1: A POSSIBLE ω CEN ANALOG EMBEDDED IN A STELLAR STREAM , 2015, 1509.04710.

[24]  D. Grupe,et al.  AN ULTRASOFT X-RAY FLARE FROM 3XMM J152130.7+074916: A TIDAL DISRUPTION EVENT CANDIDATE , 2015, 1509.00840.

[25]  N. Neumayer,et al.  Re-evaluation of the central velocity-dispersion profile in NGC 6388 , 2015, 1507.02813.

[26]  J. Greene,et al.  A ∼50,000 M⊙ SOLAR MASS BLACK HOLE IN THE NUCLEUS OF RGG 118 , 2015, 1506.07531.

[27]  A. Cumming,et al.  A STRONG SHALLOW HEAT SOURCE IN THE ACCRETING NEUTRON STAR MAXI J0556-332 , 2015, 1506.03846.

[28]  S. Komossa,et al.  Tidal disruption of stars by supermassive black holes: Status of observations , 2015, 1505.01093.

[29]  F. J. Carrera,et al.  The XMM-Newton serendipitous survey - VII. The third XMM-Newton serendipitous source catalogue , 2015, 1504.07051.

[30]  M. Miller,et al.  DISK WINDS AS AN EXPLANATION FOR SLOWLY EVOLVING TEMPERATURES IN TIDAL DISRUPTION EVENTS , 2015, 1502.03284.

[31]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[32]  T. Roberts,et al.  The powerful jet of an off-nuclear intermediate-mass black hole in the spiral galaxy NGC 2276 , 2015, 1501.04897.

[33]  R. Wijnands,et al.  The nature of very faint X-ray binaries: hints from light curves , 2014, 1412.4097.

[34]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[35]  J. Guillochon,et al.  A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT? , 2014, 1410.6014.

[36]  I. Chilingarian,et al.  A supermassive black hole in an ultra-compact dwarf galaxy , 2014, Nature.

[37]  M. Hilker,et al.  Contribution of stripped nuclear clusters to globular cluster and ultracompact dwarf galaxy populations , 2014, 1408.4467.

[38]  R. Mushotzky,et al.  A 400-solar-mass black hole in the galaxy M82 , 2014, Nature.

[39]  E. Cackett,et al.  A STRONGLY HEATED NEUTRON STAR IN THE TRANSIENT Z SOURCE MAXI J0556–332 , 2014, 1408.3276.

[40]  L. Ho,et al.  Deep spectroscopy of the MV ∼ −14.8 host galaxy of a tidal disruption flare in A1795 , 2014, 1407.6737.

[41]  W. Maksym,et al.  RBS 1032: A TIDAL DISRUPTION EVENT IN ANOTHER DWARF GALAXY? , 2014, 1407.2928.

[42]  C. Maraston,et al.  The AIMSS Project I: bridging the star cluster, galaxy divide , 2014, 1406.6065.

[43]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[44]  O. Godet,et al.  A ∼ 3.8 hr PERIODICITY FROM AN ULTRASOFT ACTIVE GALACTIC NUCLEUS CANDIDATE , 2013, 1309.4440.

[45]  L. Ho,et al.  A tidal flare candidate in Abell 1795 , 2013, 1307.6556.

[46]  S. Reddy,et al.  Forecasting neutron star temperatures: predictability and variability. , 2013, Physical review letters.

[47]  Chris Power,et al.  HMFcalc: An online tool for calculating dark matter halo mass functions , 2013, Astron. Comput..

[48]  H. Baumgardt,et al.  Ultra-compact dwarf galaxy formation by tidal stripping of nucleated dwarf galaxies , 2013, 1305.3656.

[49]  M. Colless,et al.  A high Eddington-ratio, true Seyfert 2 galaxy candidate: implications for broad-line region models , 2013, 1305.3284.

[50]  R. Wijnands,et al.  The X-ray spectral properties of very-faint persistent neutron star X-ray binaries , 2013, 1303.6640.

[51]  N. Neumayer,et al.  Limits on intermediate-mass black holes in six Galactic globular clusters with integral-field spectroscopy , 2012, 1212.3475.

[52]  E. Berger,et al.  RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. II. THE RELATIVISTIC JET SHUTS OFF AND A TRANSITION TO FORWARD SHOCK X-RAY/RADIO EMISSION , 2012, 1212.1173.

[53]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[54]  L. Ho,et al.  THE LOW-MASS, HIGHLY ACCRETING BLACK HOLE ASSOCIATED WITH THE ACTIVE GALACTIC NUCLEUS 2XMM J123103.2+110648 , 2012, 1210.0440.

[55]  Didier Barret,et al.  Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1 , 2012, Science.

[56]  A. Finoguenov,et al.  EXPLORING THE DIVERSITY OF GROUPS AT 0.1 < z < 0.8 WITH X-RAY AND OPTICALLY SELECTED SAMPLES , 2012, 1208.0344.

[57]  N. Webb,et al.  CLASSIFICATION OF X-RAY SOURCES IN THE XMM-NEWTON SERENDIPITOUS SOURCE CATALOG , 2012, 1207.1913.

[58]  H. Awaki,et al.  A CANDIDATE ACTIVE GALACTIC NUCLEUS WITH A PURE SOFT THERMAL X-RAY SPECTRUM , 2012, 1205.2774.

[59]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[60]  N. Gehrels,et al.  INVESTIGATING SLIM DISK SOLUTIONS FOR HLX-1 IN ESO 243-49 , 2012, 1204.3461.

[61]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[62]  Michael C. Liu,et al.  THE HAWAII INFRARED PARALLAX PROGRAM. I. ULTRACOOL BINARIES AND THE L/T TRANSITION, , 2012, 1201.2465.

[63]  M. Hilker,et al.  The specific frequencies of ultra-compact dwarf galaxies , 2011, 1112.4475.

[64]  T. Piran,et al.  JETS FROM TIDAL DISRUPTIONS OF STARS BY BLACK HOLES , 2011, 1111.2802.

[65]  M. Servillat,et al.  X-RAY VARIABILITY AND HARDNESS OF ESO 243–49 HLX-1: CLEAR EVIDENCE FOR SPECTRAL STATE TRANSITIONS , 2011, 1108.4405.

[66]  P. Kroupa,et al.  Tidal disruption rate of stars by supermassive black holes obtained by direct N-body simulations , 2011, 1108.2270.

[67]  Chris Done,et al.  Intrinsic disc emission and the soft X‐ray excess in active galactic nuclei , 2011, 1107.5429.

[68]  D. Grupe,et al.  DISCOVERY OF AN ULTRASOFT X-RAY TRANSIENT SOURCE IN THE 2XMM CATALOG: A TIDAL DISRUPTION EVENT CANDIDATE , 2011, 1106.0744.

[69]  E. Cackett,et al.  THE VARIABLE QUIESCENT X-RAY EMISSION OF THE TRANSIENT NEUTRON STAR XTE J1701−462 , 2010, 1101.0081.

[70]  T. Quinn,et al.  WANDERING BLACK HOLES IN BRIGHT DISK GALAXY HALOS , 2010, 1008.5147.

[71]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[72]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[73]  O. Godet,et al.  An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49 , 2009, Nature.

[74]  S. Bianchi,et al.  The bolometric luminosity of type 2 AGN from extinction-corrected [OIII]. No evidence of Eddington-l , 2009, 0905.4439.

[75]  Durham,et al.  The colour of galaxies in distant groups , 2009, 0905.3401.

[76]  S. Campana,et al.  LINKING BURST-ONLY X-RAY BINARY SOURCES TO FAINT X-RAY TRANSIENTS , 2009, 0905.0607.

[77]  A. Cumming,et al.  MAPPING CRUSTAL HEATING WITH THE COOLING LIGHT CURVES OF QUASI-PERSISTENT TRANSIENTS , 2009, 0901.3115.

[78]  J. Homan,et al.  SPECTRAL STATES OF XTE J1701 − 462: LINK BETWEEN Z AND ATOLL SOURCES , 2008, 0901.0031.

[79]  M. Gierliński,et al.  Reprocessing of X-rays in the outer accretion disc of the black hole binary XTE J1817-330 , 2008, 0808.4064.

[80]  R. Wijnands,et al.  The behavior of subluminous X-ray transients near the Galactic center as observed using the X-ray telescope aboard Swift , 2008, 0807.3458.

[81]  I. M. Stewart,et al.  The XMM-Newton serendipitous survey. V. The Second XMM-Newton serendipitous source catalogue , 2008, 0807.1067.

[82]  Philip Kaaret,et al.  Ultraluminous X-Ray Sources , 2017, 1703.10728.

[83]  S. Mineshige,et al.  Why Is Supercritical Disk Accretion Feasible? , 2007, 0710.2941.

[84]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[85]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[86]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[87]  T. Maccarone,et al.  The XMM-Newton/Chandra monitoring campaign of the Galactic center region. Description of the program , 2005, astro-ph/0508648.

[88]  L. Ho,et al.  An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations , 2005, astro-ph/0508251.

[89]  G. Rybicki,et al.  A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae , 2005, astro-ph/0506563.

[90]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[91]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[92]  William Rambold,et al.  WIRCam: the infrared wide-field camera for the Canada-France-Hawaii Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[93]  J. Fukue Critical Accretion Disk , 2004 .

[94]  T. Ebisuzaki,et al.  Massive Black Holes in Star Clusters. II. Realistic Cluster Models , 2004, astro-ph/0406231.

[95]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[96]  J. Lattimer,et al.  Minimal Cooling of Neutron Stars: A New Paradigm , 2004, astro-ph/0403657.

[97]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004, astro-ph/0402468.

[98]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[99]  S. Phillipps,et al.  A class of compact dwarf galaxies from disruptive processes in galaxy clusters , 2003, Nature.

[100]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[101]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[102]  P. Kahabka Super Soft Sources , 2002, astro-ph/0212037.

[103]  Kristen Menou,et al.  The Giant X-Ray Flare of NGC 5905: Tidal Disruption of a Star, a Brown Dwarf, or a Planet? , 2002, astro-ph/0203191.

[104]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[105]  D. Lamb,et al.  A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data , 2001, astro-ph/0108429.

[106]  M. Gregg,et al.  Ultracompact Dwarf Galaxies in the Fornax Cluster , 2001, astro-ph/0106377.

[107]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[108]  et al,et al.  The European Photon Imaging Camera on XMM-Newton: The MOS cameras : The MOS cameras , 2000, astro-ph/0011498.

[109]  Los Alamos National Lab,et al.  The XMM-Newton optical/UV monitor telescope , 2000, astro-ph/0011216.

[110]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[111]  Gerard A. Luppino,et al.  Performance of the CFH12K: a 12K by 8K CCD mosaic camera for the CFHT prime focus , 2000, Astronomical Telescopes and Instrumentation.

[112]  S. Phillipps,et al.  Compact Stellar Systems in the Fornax Cluster: Super-massive Star Clusters or Extremely Compact Dwarf Galaxies? , 2000, Publications of the Astronomical Society of Australia.

[113]  S. Larsen ASTROPHYSICS Young massive star clusters in nearby galaxies ⋆ II. Software tools, data reductions and cluster sizes , 1999, astro-ph/9907163.

[114]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[115]  S. Komossa,et al.  The giant X-ray outbursts in NGC 5905 and IC 3599: Follow-up observations and outburst scenarios , 1999, astro-ph/9901141.

[116]  L. Bildsten,et al.  Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars , 1998, astro-ph/9807179.

[117]  H Germany,et al.  The central region of the Fornax cluster II. Spectroscopy and radial velocities of member and background galaxies , 1998, astro-ph/9807144.

[118]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[119]  Michael J. Pivovaroff,et al.  X-ray CCD calibration for the AXAF CCD Imaging Spectrometer , 1996, Optics & Photonics.

[120]  J. Jernigan,et al.  First Results from the All-Sky Monitor on the Rossi X-Ray Timing Explorer , 1996, astro-ph/9608109.

[121]  G. Pavlov,et al.  Model neutron star atmospheres with low magnetic fields. 1. Atmospheres in radiative equilibrium , 1996, astro-ph/9604072.

[122]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[123]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[124]  Kazuhisa Mitsuda,et al.  Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state , 1986 .

[125]  J. Katz,et al.  Acceleration, radiation and precession in SS 433 , 1980 .

[126]  Robert E. Wilson,et al.  BLACK HOLES IN BINARY SYSTEMS , 1973 .

[127]  N. Webb,et al.  CLASSIFICATION OF X-RAY SOURCES IN THE XMM-NEWTON SERENDIPITOUS SOURCE CATALOG: OBJECTS OF SPECIAL INTEREST , 2013 .

[128]  A. M. S. Oderberg,et al.  Radio Monitoring of the Tidal Disruption Event Swift j164449.3+573451. Ii. the Relativistic Jet Shuts Off and a Transition to Forward Shock X-Ray/radio Emission , 2012 .

[129]  O. Lahav,et al.  The 6 dF Galaxy Survey : final redshift release ( DR 3 ) and southern large-scale structures , 2009 .

[130]  R. E. R. Utledge Pox 52: a Dwarf Seyfert 1 Galaxy with an Intermediate-mass Black Hole , 2008 .

[131]  J. McClintock,et al.  35 2 v 1 14 J un 2 00 6 1 X-ray Properties of BlackHole Binaries , 2006 .

[132]  S. Komossa Ludwig Biermann Award Lecture: X-ray Evidence for Supermassive Black Holes at the Centers of Nearby, Non-Active Galaxies , 2002 .

[133]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[134]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[135]  K. Arnaud XSPEC: The First Ten Years , 1996 .

[136]  P. Haensel,et al.  Non-equilibrium processes in the crust of an accreting neutron star , 1990 .

[137]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[138]  F P Retief,et al.  [The first ten years]. , 1979, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[139]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .