How to Define a Linear Order on Finite Models

Abstract We carry out a systematic investigation of the definability of linear order on classes of finite rigid structures. We obtain upper and lower bounds for the expressibility of linear order in various logics that have been studied extensively in finite model theory, such as least fixpoint logic LFP, partial fixpoint logic PFP, infinitary logic L ω ∞ ω with a finite number of variables, as well as the closures of these logics under implicit definitions. Moreover, we show that the upper and lower bounds established here cannot be made substantially tighter, unless outstanding conjectures in complexity theory are resolved at the same time.

[1]  Neil Immerman,et al.  Descriptive and Computational Complexity , 1989, FCT.

[2]  Neil Immerman Upper and lower bounds for first order expressibility , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[3]  Lauri Hella Logical Hierarchies in PTIME , 1996, Inf. Comput..

[4]  Phokion G. Kolaitis,et al.  Fixpoint logic vs. infinitary logic in finite-model theory , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[5]  Lauri Hella,et al.  Implicit Definability and Infinitary Logic in Finite Model Theory , 1995, ICALP.

[6]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[7]  Jacobo Torán,et al.  The graph isomorphism problem , 2020, Commun. ACM.

[8]  Ronald C. Read,et al.  Graph theory and computing , 1972 .

[9]  Alexei P. Stolboushkin Axiomatizable classes of finite models and definability of linear order , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[10]  Saharon Shelah,et al.  On finite rigid structures , 1994, Journal of Symbolic Logic.

[11]  Daniel Leivant,et al.  Descriptive Characterizations of Computational Complexity , 1989, J. Comput. Syst. Sci..

[12]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[13]  Phokion G. Kolaitis,et al.  Infinitary Logics and 0-1 Laws , 1992, Inf. Comput..

[14]  Anil Seth,et al.  When do fixed point logics capture complexity classes? , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[15]  A. Dawar Feasible computation through model theory , 1993 .

[16]  Yiannis N. Moschovakis,et al.  Elementary induction on abstract structures , 1974 .

[17]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[18]  Michel de Rougemont Second-order and Inductive Definability on Finite Structures , 1987, Math. Log. Q..

[19]  Martin Otto,et al.  The expressive power of fixed-point logic with counting , 1996, Journal of Symbolic Logic.

[20]  Anuj Dawar Generalized Quantifiers and Logical Reducibilities , 1995, J. Log. Comput..

[21]  A. Selman,et al.  Complexity theory retrospective II , 1998 .

[22]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[23]  Serge Abiteboul,et al.  Datalog Extensions for Database Queries and Updates , 1991, J. Comput. Syst. Sci..

[24]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[25]  Serge Abiteboul,et al.  Computing with First-Order Logic , 1995, J. Comput. Syst. Sci..

[26]  A. Dawar,et al.  Infinitary Logic and Inductive Definability over Finite Structures , 1995, Inf. Comput..

[27]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[28]  David Harel,et al.  Structure and complexity of relational queries , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[29]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[30]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[31]  Gregory L. McColm When Is Arithmetic Possible? , 1990, Ann. Pure Appl. Log..

[32]  Paul Erdös,et al.  Random Graph Isomorphism , 1980, SIAM J. Comput..

[33]  Phokion G. Kolaitis Implicit definability on finite structures and unambiguous computations , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[34]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1992, Comb..

[35]  Phokion G. Kolaitis,et al.  On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..

[36]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[37]  Phokion G. Kolaitis On Asymptotic Probability of Inductive Queries and Their Decision Problem , 1985, Logic of Programs.

[38]  Lauri Hella,et al.  Almost Everywhere Equivalence of Logics in Finite Model Theory , 1996, Bulletin of Symbolic Logic.

[39]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[40]  Saharon Shelah,et al.  Fixed-point extensions of first-order logic , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[41]  Ronald Fagin,et al.  The number of finite relational structures , 1977, Discret. Math..

[42]  Laks V. S. Lakshmanan,et al.  Inductive pebble games and the expressive power of datalog , 1989, PODS '89.

[43]  Neil Immerman,et al.  McColm's Conjecture , 1994, LICS 1994.

[44]  E. Lander,et al.  Describing Graphs: A First-Order Approach to Graph Canonization , 1990 .

[45]  Ronald Fagin,et al.  Probabilities on finite models , 1976, Journal of Symbolic Logic.

[46]  Martin Otto,et al.  Inductive Definability with Counting on Finite Structures , 1992, CSL.

[47]  K. Jon Barwise,et al.  On Moschovakis closure ordinals , 1977, Journal of Symbolic Logic.