Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis1[W][OA]

The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development.

[1]  E. Hafez,et al.  Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. , 2011, Microbiological research.

[2]  Patrick Xuechun Zhao,et al.  Computational analysis of miRNA targets in plants: current status and challenges , 2011, Briefings Bioinform..

[3]  M. Hanlon,et al.  Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. , 2011, The New phytologist.

[4]  Doron Betel,et al.  Widespread regulatory activity of vertebrate microRNA* species. , 2011, RNA.

[5]  Sam Griffiths-Jones,et al.  MicroRNA evolution by arm switching , 2011, EMBO reports.

[6]  Jean Dénarié,et al.  Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza , 2011, Nature.

[7]  Nan Shen,et al.  miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. , 2010, Blood.

[8]  L. Miozzi,et al.  Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. , 2010, Virology.

[9]  G. Nuovo In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. , 2010, Methods.

[10]  B. San Segundo,et al.  Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. , 2010, The New phytologist.

[11]  Ping Wu,et al.  High-throughput degradome sequencing can be used to gain insights into microRNA precursor metabolism. , 2010, Journal of experimental botany.

[12]  Weixiong Zhang,et al.  Multiple distinct small RNAs originate from the same microRNA precursors , 2010, Genome Biology.

[13]  D. van Tuinen,et al.  Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. , 2010, Molecular plant-microbe interactions : MPMI.

[14]  A. Kononowicz,et al.  R proteins as fundamentals of plant innate immunity , 2010, Cellular & Molecular Biology Letters.

[15]  H. Ebhardt,et al.  Naturally occurring variations in sequence length creates microRNA isoforms that differ in argonaute effector complex specificity , 2010, Silence.

[16]  P. May,et al.  Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. , 2010, Molecular plant-microbe interactions : MPMI.

[17]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[18]  Yun Zheng,et al.  Transcriptome-wide identification of microRNA targets in rice. , 2010, The Plant journal : for cell and molecular biology.

[19]  Guohua Xu,et al.  Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. , 2010, Physiologia plantarum.

[20]  Xiaofeng Cao,et al.  Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica) , 2010, Frontiers in Biology.

[21]  G. Hannon,et al.  Evolutionary flux of canonical microRNAs and mirtrons in Drosophila , 2010, Nature Genetics.

[22]  M. Levine,et al.  miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data , 2010, Genome Biology.

[23]  Weixiong Zhang,et al.  Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development , 2010, BMC Genomics.

[24]  Xinbin Dai,et al.  Genomic Inventory and Transcriptional Analysis of Medicago truncatula Transporters1[W][OA] , 2009, Plant Physiology.

[25]  L. Miozzi,et al.  Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. , 2009, The New phytologist.

[26]  S. Griffiths-Jones The role of RNA molecules in cellular biology. Editorial. , 2009, Briefings in functional genomics & proteomics.

[27]  Wen-Hsiung Li,et al.  Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing1[W][OA] , 2009, Plant Physiology.

[28]  Yun Zheng,et al.  Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. , 2009, The New phytologist.

[29]  K. Reinert,et al.  RazerS--fast read mapping with sensitivity control. , 2009, Genome research.

[30]  J. Gouzy,et al.  Genome-Wide Medicago truncatula Small RNA Analysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots and Nodules[W] , 2009, The Plant Cell Online.

[31]  M. J. Harrison,et al.  Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis1[W][OA] , 2009, Plant Physiology.

[32]  P. May,et al.  Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs by Comprehensive Real-Time Polymerase Chain Reaction Profiling and Small RNA Sequencing1[C][W][OA] , 2009, Plant Physiology.

[33]  M. J. Harrison,et al.  Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. , 2009, Pest management science.

[34]  Wei Li,et al.  Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor , 2009, BMC Molecular Biology.

[35]  Pamela J Green,et al.  Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome , 2009, Nature Protocols.

[36]  O. Voinnet Origin, Biogenesis, and Activity of Plant MicroRNAs , 2009, Cell.

[37]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[38]  A. Muñoz,et al.  GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula[W] , 2009, The Plant Cell Online.

[39]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[40]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[41]  M. Zavolan,et al.  miRNA in situ hybridization in formaldehyde and EDC–fixed tissues , 2009, Nature Methods.

[42]  Webb Miller,et al.  CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets , 2009, Bioinform..

[43]  M. J. Harrison,et al.  Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis , 2009 .

[44]  E. Blancaflor,et al.  Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis , 2009, BMC Plant Biology.

[45]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[46]  V. Moulton,et al.  High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families , 2008, BMC Genomics.

[47]  Q. Mi,et al.  MicroRNA Genes , 2008, Annals of the New York Academy of Sciences.

[48]  D. Bartel,et al.  Criteria for Annotation of Plant MicroRNAs , 2008, The Plant Cell Online.

[49]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[50]  Todd Blevins,et al.  Evolution of Arabidopsis MIR genes generates novel microRNA classes , 2008, Nucleic acids research.

[51]  S. He,et al.  Suppression of the MicroRNA Pathway by Bacterial Effector Proteins , 2008, Science.

[52]  O. Voinnet Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. , 2008, Current opinion in plant biology.

[53]  Richard J Morris,et al.  Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes , 2008, Proceedings of the National Academy of Sciences.

[54]  R. Lister,et al.  A link between RNA metabolism and silencing affecting Arabidopsis development. , 2008, Developmental cell.

[55]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[56]  Martin Crespi,et al.  MicroRNA166 controls root and nodule development in Medicago truncatula. , 2008, The Plant journal : for cell and molecular biology.

[57]  L. Sieburth,et al.  Widespread Translational Inhibition by Plant miRNAs and siRNAs , 2008, Science.

[58]  D. Bartel,et al.  Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome , 2008, Current Biology.

[59]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[60]  Xiao-yan Lu,et al.  Plant miRNAs and abiotic stress responses. , 2008, Biochemical and biophysical research communications.

[61]  R. Sunkar,et al.  Novel and nodulation-regulated microRNAs in soybean roots , 2008, BMC Genomics.

[62]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[63]  Hong Duan,et al.  The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution , 2008, Nature Structural &Molecular Biology.

[64]  Bin Liu,et al.  Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs) , 2008, Proceedings of the National Academy of Sciences.

[65]  D. Baulcombe,et al.  Identification and characterization of small RNAs from the phloem of Brassica napus. , 2008, The Plant journal : for cell and molecular biology.

[66]  W. Scheible,et al.  MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis , 2008, The Plant journal : for cell and molecular biology.

[67]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[68]  Xuemei Chen MicroRNA metabolism in plants. , 2008, Current topics in microbiology and immunology.

[69]  V. Chinnusamy,et al.  Nuclear RNA export and its importance in abiotic stress responses of plants. , 2008, Current topics in microbiology and immunology.

[70]  M. Crespi,et al.  Riboregulators in plant development. , 2007, Biochemical Society transactions.

[71]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[72]  Matthew R Willmann,et al.  Conservation and evolution of miRNA regulatory programs in plant development. , 2007, Current opinion in plant biology.

[73]  V. Chiang,et al.  MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. , 2007, The Plant journal : for cell and molecular biology.

[74]  D. Bartels,et al.  The role of small RNAs in abiotic stress , 2007, FEBS letters.

[75]  Noah Fahlgren,et al.  Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. , 2007, The Plant journal : for cell and molecular biology.

[76]  Ramanjulu Sunkar,et al.  Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. , 2007, Trends in plant science.

[77]  Guandong Wang,et al.  Molecular Systems Biology 3; Article number 103; doi:10.1038/msb4100143 Citation: Molecular Systems Biology 3:103 , 2022 .

[78]  Jason S. Cumbie,et al.  High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes , 2007, PloS one.

[79]  M. J. Harrison,et al.  A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis , 2007, Proceedings of the National Academy of Sciences.

[80]  Fast and effective , 2007, BDJ.

[81]  F. Krajinski,et al.  Towards the elucidation of AM-specific transcription in Medicago truncatula. , 2007, Phytochemistry.

[82]  J. Ludwig-Müller,et al.  Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization , 2006 .

[83]  D. Bartel,et al.  A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. , 2006, Genes & development.

[84]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[85]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[86]  M. Crespi,et al.  MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. , 2006, Genes & development.

[87]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[88]  M. Stitt,et al.  PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants1[W][OA] , 2006, Plant Physiology.

[89]  Jonathan D. G. Jones,et al.  A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling , 2006, Science.

[90]  X. Deng Faculty Opinions recommendation of Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. , 2006 .

[91]  Xuemei Chen,et al.  HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide , 2006, Nucleic acids research.

[92]  D. Chitwood,et al.  Organ polarity in plants is specified through the opposing activity of two distinct small regulatory RNAs. , 2006, Cold Spring Harbor symposia on quantitative biology.

[93]  O. Voinnet,et al.  Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections , 2006, Nature Genetics.

[94]  Mark Stitt,et al.  PHO 2 , MicroRNA 399 , and PHR 1 Define a Phosphate-Signaling Pathway in Plants 1 [ W ] [ OA ] , 2006 .

[95]  Chun-Lin Su,et al.  Regulation of Phosphate Homeostasis by MicroRNA in Arabidopsis[W] , 2005, The Plant Cell Online.

[96]  O. Borsani,et al.  Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis , 2005, Cell.

[97]  K. Livak,et al.  Real-time quantification of microRNAs by stem–loop RT–PCR , 2005, Nucleic acids research.

[98]  J. Ludwig-Müller,et al.  Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. , 2005, Journal of plant physiology.

[99]  Folker Meyer,et al.  Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. , 2005, Molecular plant-microbe interactions : MPMI.

[100]  Joachim Selbig,et al.  Extension of the Visualization Tool MapMan to Allow Statistical Analysis of Arrays, Display of Coresponding Genes, and Comparison with Known Responses1 , 2005, Plant Physiology.

[101]  J. F. Marsh,et al.  Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators , 2005, Science.

[102]  K. Akiyama,et al.  Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi , 2005, Nature.

[103]  A. Pühler,et al.  Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza1[w] , 2005, Plant Physiology.

[104]  Gang Wu,et al.  Nuclear processing and export of microRNAs in Arabidopsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[106]  C. Kidner,et al.  The developmental role of microRNA in plants. , 2005, Current opinion in plant biology.

[107]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[108]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[109]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[110]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[111]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[112]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[113]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[114]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[115]  Franck Vazquez,et al.  The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. , 2004, Genes & development.

[116]  Adam M. Gustafson,et al.  Genetic and Functional Diversification of Small RNA Pathways in Plants , 2004, PLoS biology.

[117]  H. Vaucheret,et al.  The Nuclear dsRNA Binding Protein HYL1 Is Required for MicroRNA Accumulation and Plant Development, but Not Posttranscriptional Transgene Silencing , 2004, Current Biology.

[118]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[119]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[120]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[121]  C. Town,et al.  Transcript Profiling Coupled with Spatial Expression Analyses Reveals Genes Involved in Distinct Developmental Stages of an Arbuscular Mycorrhizal Symbiosis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tp , 2003, The Plant Cell Online.

[122]  Marjori Matzke,et al.  Evidence for Nuclear Processing of Plant Micro RNA and Short Interfering RNA Precursors1[w] , 2003, Plant Physiology.

[123]  Z. Xie,et al.  Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation , 2003, Current Biology.

[124]  Folker Meyer,et al.  Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. , 2003, Molecular plant-microbe interactions : MPMI.

[125]  G. Oldroyd,et al.  Identification and Characterization of Nodulation-Signaling Pathway 2, a Gene of Medicago truncatula Involved in Nod Factor Signaling1 , 2003, Plant Physiology.

[126]  G. Bécard,et al.  A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots ofMedicago truncatula 1 , 2003, Plant Physiology.

[127]  G. Oldroyd,et al.  Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod actor signaling. , 2003, Plant physiology.

[128]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[129]  J. Messing,et al.  CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana , 2002, Current Biology.

[130]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[131]  T. Tuschl,et al.  Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate , 2001, The EMBO journal.

[132]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[133]  T. Boller,et al.  Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices , 1999, Planta.

[134]  J. M. Mauro,et al.  Structure of plant and fungal peroxidases. , 1992, Biochemical Society transactions.

[135]  A. Trouvelot,et al.  Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une significantion fonctionnelle , 1986 .