Multi-Channel, Multi-Radio in Wireless Mesh Networks

Decreasing hardware prices enables increased performance in wireless networks to a low cost. By adding an extra WLAN radio card to existing single radio network platforms, the possibility to utilize additional frequencies arise and opens the world of multi-channel, multi-radio (MCMR). In this report, we investigate different approaches to make as good use of MCMR as possible. A hybrid technique using two radios, one receiving data and the other transmitting, is chosen and implemented. This requires a user-space application, modifications to the wireless driver and the development of a Linux kernel bonding module handling the communication between user-space and drivers. Test results shows that the chosen method increase performance substantially compared to the standard single-channel, single-radio setup, which makes fur- ther development interesting as new faster wireless techniques becomes standard. Fallande hardvarupriser gor det mojligt att till ett lagt pris oka prestandan i tradlosa natverk. Genom att utnyttja tva WLAN-kort istallet for ett i befintliga plattformar oppnar sig en varld av mojligheter inom multi-channel, multi-radio (MCMR). I rapporten undersoker vi olika metoder for att implementera MCMR. Metoden som implementeras gar kortfattat ut pa att ett av de tva radiokorten tar emot data och det andra skickar data. For att gora detta mojlighet kravs en applikation, modifieringar av drivrutiner samt utvecklandet av en bondingmodul i Linuxkarnan vars uppgift ar att skota kommunikationen mellan applikation och drivrutiner. Testresultaten visar att hastigheten under olika forhallanden okar patagligt i jamforelse med vanlig single-channel, single-radio, vilket gor fortsatt utveckling intressant i takt med att nya snabbare tradlosa tekniker blir standard.

[1]  Jean C. Walrand,et al.  Practical synchronization techniques for multi-channel MAC , 2006, MobiCom '06.

[2]  Rong-Hong Jan,et al.  A MAC Protocol for Multi-Channel Multi-Interface Wireless Mesh Network using Hybrid Channel Assignment Scheme , 2007, J. Inf. Sci. Eng..

[3]  Nitin H. Vaidya,et al.  Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks , 2006, MOCO.

[4]  Chong-kwon Kim,et al.  On the Hidden Terminal Problem in Multi-rate Ad Hoc Wireless Networks , 2005, ICOIN.

[5]  Philippe Jacquet,et al.  Optimized Link State Routing Protocol (OLSR) , 2003, RFC.

[6]  Charles E. Perkins,et al.  Ad hoc On-Demand Distance Vector (AODV) Routing , 2001, RFC.

[7]  Jadwiga Indulska,et al.  AODV-HM: A Hybrid Mesh Ad-hoc On-demand Distance Vector Routing Protocol , 2007, J. Res. Pract. Inf. Technol..

[8]  David B. Johnson,et al.  The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks , 2003 .

[9]  Himanshu Gupta,et al.  Multichannel MAC Protocols for Wireless Networks , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[10]  Jadwiga Indulska,et al.  Evaluation of multi-radio extensions to AODV for wireless mesh networks , 2006, MobiWac '06.

[11]  Nitin H. Vaidya,et al.  Routing and interface assignment in multi-channel multi-interface wireless networks , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[12]  Edmundo Roberto Mauro Madeira,et al.  A Scalable Link Quality Routing Protocol for Multi-radio Wireless Mesh Networks , 2007, 2007 16th International Conference on Computer Communications and Networks.

[13]  Nitin H. Vaidya,et al.  Multichannel mesh networks: challenges and protocols , 2006, IEEE Wireless Communications.

[14]  Douglas Comer,et al.  Principles, protocols, and architecture , 1995 .

[15]  Nitin H. Vaidya,et al.  Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver , 2004, MobiHoc '04.