Quantum computation of molecular response properties

Accurately predicting response properties of molecules such as the dynamic polarizability and hyperpolarizability using quantum mechanics has been a long-standing challenge with widespread applications in material and drug design. Classical simulation techniques in quantum chemistry are hampered by the exponential growth of the many-electron Hilbert space as the system size increases. In this work, we propose an algorithm for computing linear and nonlinear molecular response properties on quantum computers, by first reformulating the target property into a symmetric expression more suitable for quantum computation via introducing a set of auxiliary quantum states, and then determining these auxiliary states via solving the corresponding linear systems of equations on quantum computers. On one hand, we prove that using the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] as a subroutine the proposed algorithm scales only polynomially in the system size instead of the dimension of the exponentially large Hilbert space, and hence achieves an exponential speedup over existing classical algorithms. On the other hand, we introduce a variational hybrid quantum-classical variant of the proposed algorithm, which is more practical for near-term quantum devices.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[3]  Mile Gu,et al.  Experimental quantum computing to solve systems of linear equations. , 2013, Physical review letters.

[4]  Trygve Helgaker,et al.  Recent advances in wave function-based methods of molecular-property calculations. , 2012, Chemical reviews.

[5]  A. Chiesa,et al.  Quantum hardware simulating four-dimensional inelastic neutron scattering , 2018, Nature Physics.

[6]  Jeroen van den Brink,et al.  Resonant Inelastic X-ray Scattering Studies of Elementary Excitations , 2010, 1009.3630.

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  Alán Aspuru-Guzik,et al.  A two-qubit photonic quantum processor and its application to solving systems of linear equations , 2014, Scientific Reports.

[9]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[10]  Guglielmo Mazzola,et al.  Precise measurement of quantum observables with neural-network estimators , 2020 .

[11]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[12]  S. Mukamel,et al.  Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. , 2000, Annual review of physical chemistry.

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[15]  Pedro Chamorro-Posada,et al.  swap test and Hong-Ou-Mandel effect are equivalent , 2013, 1303.6814.

[16]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[17]  I. Kassal,et al.  Quantum algorithm for molecular properties and geometry optimization. , 2009, The Journal of chemical physics.

[18]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[19]  R. Somma,et al.  Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing. , 2018, Physical review letters.

[20]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[21]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[22]  Philip Walther,et al.  2 a b c d State qubit : Eigenvalue qubit : Ancilla qubit : 1 , 2013 .

[23]  L. DiCarlo,et al.  Calculating energy derivatives for quantum chemistry on a quantum computer , 2019, npj Quantum Information.

[24]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[25]  Ming-Cheng Chen,et al.  Solving Systems of Linear Equations with a Superconducting Quantum Processor. , 2017, Physical review letters.

[26]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[27]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[28]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[29]  W. Marsden I and J , 2012 .

[30]  Jiangfeng Du,et al.  NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. , 2010, Physical review letters.

[31]  H. Koch,et al.  Analytical calculation of full configuration interaction response properties: Application to Be , 1991 .

[32]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[33]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[34]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[35]  Andreas Dreuw,et al.  Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. , 2018, Chemical reviews.

[36]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[37]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[38]  Paul R. C. Kent,et al.  Toward a predictive theory of correlated materials , 2018, Science.

[39]  Taichi Kosugi,et al.  Linear-response functions of molecules on a quantum computer: Charge and spin responses and optical absorption , 2020 .

[40]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[41]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[44]  R. Feynman Simulating physics with computers , 1999 .

[45]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[46]  D. M. Bishop,et al.  Nonlinear response theory with relaxation: the first-order hyperpolarizability. , 2005, The Journal of chemical physics.

[47]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[48]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[49]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[50]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[51]  S. Aaronson Read the fine print , 2015, Nature Physics.

[52]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[53]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[54]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[55]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[56]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[57]  Jian-Wei Pan,et al.  Experimental realization of quantum algorithm for solving linear systems of equations , 2013, 1302.1946.

[58]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[59]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[60]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[61]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[62]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[63]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[64]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[65]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.