Structural variants drive context-dependent oncogene activation in cancer

[1]  Jian Zhou Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale , 2022, Nature Genetics.

[2]  B. van Steensel,et al.  Nonlinear control of transcription through enhancer–promoter interactions , 2021, Nature.

[3]  Feng Yue,et al.  Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes , 2021, Nature Methods.

[4]  J. Peters,et al.  Genome folding through loop extrusion by SMC complexes , 2021, Nature Reviews Molecular Cell Biology.

[5]  Jesse R. Dixon,et al.  Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure , 2020, Nature genetics.

[6]  Jesse R. Dixon,et al.  Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer , 2020, Nature Genetics.

[7]  Nuno A. Fonseca,et al.  Patterns of somatic structural variation in human cancer genomes , 2020, Nature.

[8]  Icgc,et al.  Pan-cancer analysis of whole genomes , 2017, bioRxiv.

[9]  William A. Flavahan,et al.  Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs , 2019, Nature.

[10]  Elie N. Farah,et al.  Transcriptionally Active HERV-H Retrotransposons Demarcate Topologically Associating Domains in Human Pluripotent Stem Cells , 2019, Nature Genetics.

[11]  E. Furlong,et al.  Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression , 2019, Nature Genetics.

[12]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[13]  Jun Li,et al.  Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. , 2019, Cancer cell.

[14]  E. Campo,et al.  Mantle cell lymphoma pathology update in the 2016 WHO classification , 2019, Annals of Lymphoma.

[15]  Bryan J. Venters,et al.  Epigenetic and transcriptional profiling of triple negative breast cancer , 2019, Scientific Data.

[16]  H. G. van der Poel,et al.  Optimized ChIP-seq method facilitates transcription factor profiling in human tumors , 2018, Life Science Alliance.

[17]  William Stafford Noble,et al.  Integrative detection and analysis of structural variation in cancer genomes , 2018, Nature Genetics.

[18]  T. Giordano,et al.  Transcriptional targeting of oncogene addiction in medullary thyroid cancer. , 2018, JCI insight.

[19]  S. Mundlos,et al.  Structural variation in the 3D genome , 2018, Nature Reviews Genetics.

[20]  Peter J. Park,et al.  Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing , 2018, bioRxiv.

[21]  Daniel S. Day,et al.  Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism , 2018, Cell reports.

[22]  Min Min Chan,et al.  Identification of novel lncRNAs regulated by the TAL1 complex in T-cell acute lymphoblastic leukemia , 2018, Leukemia.

[23]  R. Young,et al.  High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. , 2018, The Journal of investigative dermatology.

[24]  F. Finkernagel,et al.  Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1 , 2018, Nucleic acids research.

[25]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[26]  Wei Li,et al.  Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis , 2018, Genome research.

[27]  Bing Ren,et al.  The Three-Dimensional Organization of Mammalian Genomes. , 2017, Annual review of cell and developmental biology.

[28]  T. Ushijima,et al.  Targeting of super-enhancers and mutant BRAF can suppress growth of BRAF-mutant colon cancer cells via repression of MAPK signaling pathway. , 2017, Cancer letters.

[29]  Erez Lieberman Aiden,et al.  Genome Organization Drives Chromosome Fragility , 2017, Cell.

[30]  E. Barillot,et al.  Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries , 2017, Nature Genetics.

[31]  Stefan Schoenfelder,et al.  Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours , 2017, Genome Biology.

[32]  S. Bicciato,et al.  Comparison of computational methods for Hi-C data analysis , 2017, Nature Methods.

[33]  Vineet Bafna,et al.  HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies , 2017, Genome research.

[34]  S. Aerts,et al.  Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks , 2017, bioRxiv.

[35]  S. Armstrong,et al.  ENL links histone acetylation to oncogenic gene expression in AML , 2017, Nature.

[36]  R. Young,et al.  Transcriptional Addiction in Cancer , 2017, Cell.

[37]  I. Petersen,et al.  Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking , 2016, Nature Genetics.

[38]  Rachel Patton McCord,et al.  RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. , 2016, Biochimica et biophysica acta.

[39]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[40]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[41]  Aaron T. L. Lun,et al.  Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations , 2016, Genome research.

[42]  G. Natoli,et al.  Dissection of transcriptional and cis‐regulatory control of differentiation in human pancreatic cancer , 2016, The EMBO journal.

[43]  L. Mirny,et al.  The 3D Genome as Moderator of Chromosomal Communication , 2016, Cell.

[44]  M. Gerstein,et al.  Role of non-coding sequence variants in cancer , 2016, Nature Reviews Genetics.

[45]  Gary D Bader,et al.  Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance , 2016, Cell.

[46]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[47]  Daniel S. Day,et al.  Activation of proto-oncogenes by disruption of chromosome neighborhoods , 2015, Science.

[48]  Simon C Watkins,et al.  Telomerase activation by genomic rearrangements in high-risk neuroblastoma , 2015, Nature.

[49]  R. Young,et al.  CDK7-Dependent Transcriptional Addiction in Triple-Negative Breast Cancer , 2015, Cell.

[50]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[51]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[52]  Jing Liang,et al.  Chromatin architecture reorganization during stem cell differentiation , 2015, Nature.

[53]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[54]  R. Young,et al.  An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element , 2014, Science.

[55]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[56]  Gary D Bader,et al.  Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma , 2014, Nature.

[57]  L. Doyle,et al.  Sarcoma classification: An update based on the 2013 World Health Organization Classification of Tumors of Soft Tissue and Bone , 2014, Cancer.

[58]  Britta A. M. Bouwman,et al.  A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia , 2014, Cell.

[59]  Robert Tjian,et al.  Looping Back to Leap Forward: Transcription Enters a New Era , 2014, Cell.

[60]  Ming Yu,et al.  Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation , 2013, Genes & development.

[61]  Andrew C. Adey,et al.  Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions , 2013, Nature Biotechnology.

[62]  Bing Ren,et al.  Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing , 2013, Nature Biotechnology.

[63]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[64]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[65]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[66]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[67]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[68]  Renzhi Cao,et al.  The Properties of Genome Conformation and Spatial Gene Interaction and Regulation Networks of Normal and Malignant Human Cell Types , 2013, PloS one.

[69]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[70]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[71]  Jesse M. Engreitz,et al.  Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease , 2012, PloS one.

[72]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[73]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[74]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[75]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[76]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[77]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[78]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[79]  J. León,et al.  Myc roles in hematopoiesis and leukemia. , 2010, Genes & cancer.

[80]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[81]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[82]  P. Leder,et al.  Translocations among antibody genes in human cancer. , 1983, Science.

[83]  P. Leder,et al.  Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.