Toughness and Delaunay triangulations
暂无分享,去创建一个
[1] Michael B. Dillencourt,et al. Realizability of Delaunay Triangulations , 1990, Inf. Process. Lett..
[2] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[3] W. T. Tutte. The Factorization of Linear Graphs , 1947 .
[4] H. Whitney. A Theorem on Graphs , 1931 .
[5] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[6] H. Coxeter,et al. Introduction to Geometry. , 1961 .
[7] S. Louis Hakimi,et al. Recognizing tough graphs is NP-hard , 1990, Discret. Appl. Math..
[8] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[9] A. Lingus,et al. The Greedy and Delaunay Triangulations are Not Bad in the Average Case , 1986, Inf. Process. Lett..
[10] Takao Nishizeki. A 1-tough nonhamiltonian maximal planar graph , 1980, Discret. Math..
[11] Glenn K. Manacher,et al. Neither the Greedy Nor the Delaunay Triangulation of a Planar Point Set Approximates the Optimal Triangulation , 1979, Inf. Process. Lett..
[12] D. Barnette,et al. Hamiltonian circuits on 3-polytopes , 1970 .
[13] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[14] E. Bolker,et al. Generalized Dirichlet tessellations , 1986 .
[15] Michael B. Dillencourt,et al. An upper bound on the shortness exponent of inscribable polytopes , 1989, J. Comb. Theory, Ser. B.
[16] Branko Grünbaum,et al. Some problems on polyhedra , 1987 .
[17] O. Ore. The Four-Color Problem , 1967 .
[18] Vasek Chvátal,et al. Tough graphs and hamiltonian circuits , 1973, Discret. Math..
[19] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[20] David P. Dobkin,et al. Delaunay graphs are almost as good as complete graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[21] Vitit KANTABUTRA,et al. Traveling Salesman Cycles are not Always Subgraphs of Voronoi Duals , 1983, Inf. Process. Lett..
[22] Carl Gutwin,et al. The Delauney Triangulation Closely Approximates the Complete Euclidean Graph , 1989, WADS.
[23] Michael B. Dillencourt. An upper bound on the shortness exponent of 1-tough, maximal planar graphs , 1991, Discret. Math..
[24] Richard C. T. Lee,et al. On the average length of Delaunay triangulations , 1984, BIT.
[25] Joseph O'Rourke,et al. The Computational Geometry Column #2 , 1987, COMG.
[26] D. T. Lee,et al. Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.
[27] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes ind dimension , 1990, Comb..
[28] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.
[29] Ethan D. Bolker,et al. Recognizing Dirichlet tessellations , 1985 .
[30] David G. Kirkpatrick,et al. A Note on Delaunay and Optimal Triangulations , 1980, Inf. Process. Lett..
[31] Jean-Daniel Boissonnat,et al. Geometric structures for three-dimensional shape representation , 1984, TOGS.
[32] Michael B. Dillencourt. Traveling Salesman Cycles are not Always Subgraphs of Delaunay Triangulations or of Minimum Weight Triangulations , 1987, Inf. Process. Lett..
[33] J. O'Rourke,et al. Connect-the-dots: a new heuristic , 1987 .
[34] Errol L. Lloyd. On triangulations of a set of points in the plane , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[35] M. H. A. Newman,et al. Topology . Elements of the topology of plane sets of points , 1939 .
[36] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[37] Michael B. Dillencourt,et al. A Non-Hamiltonian, Nondegenerate Delaunay Triangulation , 1987, Inf. Process. Lett..