AbstractQuadrature formulas based on the “practical” abscissasxk=cos(k π/n),k=0(1)n, are obtained for the numerical evaluation of the weighted Cauchy principal value integrals
$$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 (1 - x)^\alpha (1 + x)^\beta (f(x))/(x - a)){\rm E}dx,$$
where α,β>−1 andaε(−1, 1). An interesting problem concerning these quadrature formulas is their convergence for a suitable class of functions. We establish convergence of these quadrature formulas for the class of functions which are Hölder-continuous on [−1, 1].ZusammenfassungErmittelt werden die auf den “praktischen” Abszissenxk=cos(k π/n),k=0(1)n, basierten Quadraturformeln für die numerische Berechnung von Cauchyschen gewichteten Hauptwerten
$$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 (1 - x)^\alpha (1 + x)^\beta (f(x))/(x - a)){\rm E}dx,$$
wobei α,β>−1 undaε(−1, 1). Ein interessantes Problem bezüglich dieser Quadraturformeln ist ihre Konvergenz für die Klasse von Funktionen, die auf [−1, 1] Hölder-kontinuierlich sind.
[1]
F. Smithies,et al.
Singular Integral Equations
,
1955,
The Mathematical Gazette.
[2]
J. H. McCabe,et al.
On a certain class of Lebesgue constants
,
1973
.
[3]
David Elliott,et al.
On the convergence of a quadrature rule for evaluating certain cauchy principal value integrals: An addendum
,
1975
.
[4]
F. Smithies,et al.
Singular Integral Equations
,
1977
.
[5]
David Elliott,et al.
An algorithm for the numerical evaluation of certain Cauchy principal value integrals
,
1972
.
[6]
David Elliott,et al.
On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals
,
1974
.
[7]
M. M. Chawla,et al.
Quadrature formulas for cauchy principal value integrals
,
2005,
Computing.