New multigrid smoothers for the Oseen problem

We investigate the performance of smoothers based on the Hermitian/skew-Hermitian (HSS) and augmented Lagrangian (AL) splittings applied to the Marker-and-Cell (MAC) discretization of the Oseen problem. Both steady and unsteady flows are considered. Local Fourier analysis and numerical experiments on a two-dimensional lid-driven cavity problem indicate that the proposed smoothers result in h-independent convergence and are fairly robust with respect to the Reynolds number. A direct comparison shows that the new smoothers compare favorably to coupled smoothers of Braess–Sarazin type, especially in terms of scaling for increasing Reynolds number. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[4]  H. Elman Preconditioners for saddle point problems arising in computational fluid dynamics , 2002 .

[5]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[6]  Michele Benzi,et al.  Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[7]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[8]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[9]  Gene H. Golub,et al.  Spectral Analysis of a Preconditioned Iterative Method for the Convection-Diffusion Equation , 2007, SIAM J. Matrix Anal. Appl..

[10]  Cornelis W. Oosterlee,et al.  An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[11]  Michele Benzi,et al.  Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..

[12]  G. Golub,et al.  Optimization of the Hermitian and Skew-Hermitian Splitting Iteration for Saddle-Point Problems , 2003 .

[13]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[14]  Maxim A. Olshanskii,et al.  Pressure Schur Complement Preconditioners for the Discrete Oseen Problem , 2007, SIAM J. Sci. Comput..

[15]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[16]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[17]  Cornelis W. Oosterlee,et al.  FOURIER ANALYSIS OF GMRES ( m ) PRECONDITIONED BY MULTIGRID , 2000 .

[18]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[19]  Cornelis W. Oosterlee,et al.  Multigrid relaxation methods for systems of saddle point type , 2008 .

[20]  Jia Liu,et al.  An Efficient Solver for the Incompressible Navier-Stokes Equations in Rotation Form , 2007, SIAM J. Sci. Comput..

[21]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[22]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[23]  P. Wesseling,et al.  Geometric multigrid with applications to computational fluid dynamics , 2001 .

[24]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[25]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[26]  Volker John,et al.  International Journal for Numerical Methods in Fluids Numerical Performance of Smoothers in Coupled Multigrid Methods for the Parallel Solution of the Incompressible Navier – Stokes Equations , 2022 .

[27]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[28]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..