An optimization study on the excess reactivity in a linear breed-and-burn fast reactor (B&BR)

[1]  J. Kittel,et al.  IRRADIATION BEHAVIOR OF HIGH-BURNUP URANIUM--PLUTONIUM ALLOY PROTOTYPE FUEL ELEMENTS. , 1968 .

[2]  G. Hofman,et al.  Metallic Fast Reactor Fuels , 2006 .

[3]  H. Sekimoto,et al.  CANDLE: The New Burnup Strategy , 2001 .

[4]  Shelly X. Li,et al.  Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides from Fission Products , 2006 .

[5]  H. Ryu,et al.  Performance of FCCI barrier foils for U–Zr–X metallic fuel , 2009 .

[6]  Yonghee Kim Semi-Direct Recycling of LWR Spent Fuel in Ultra-Long-Life Core Fast Reactor (UCFR) , 2010 .

[7]  E. Greenspan,et al.  Energy sustainability and economic stability with Breed and Burn reactors , 2011 .

[8]  Yonghee Kim,et al.  A compact breed and burn fast reactor using spent nuclear fuel blanket , 2012 .

[9]  Hyung Jin Shim,et al.  MCCARD : MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS , 2012 .

[10]  Mike Garrett,et al.  TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW , 2013 .

[11]  Deokjung Lee,et al.  Design of Ultralong-Cycle Fast Reactor Employing Breed-and-Burn Strategy , 2013 .

[12]  Staffan Qvist Optimizing the Design of Small Fast Spectrum Battery-Type Nuclear Reactors , 2014 .

[13]  S. Qvist,et al.  An Autonomous Reactivity Control system for improved fast reactor safety , 2014 .

[14]  D. Hartanto,et al.  A CONCAVE INITIAL CORE TO OPTIMIZE THE REACTIVITY OF BREED-AND-BURN FAST REACTOR (B&BR) , 2014 .

[15]  Ehud Greenspan,et al.  3D Shuffling in Breed and Burn Reactors , 2014 .

[16]  김용희,et al.  FAST and SAFE Passive Safety Devices for Sodium-cooled Fast Reactor , 2015 .

[17]  Yonghee Kim,et al.  Alternative reflectors for a compact sodium-cooled breed-and-burn fast reactor , 2015 .

[18]  Yonghee Kim,et al.  Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor , 2016 .