The point of zero charge of phyllosilicate minerals using the Mular–Roberts titration technique

[1]  Jan D. Miller,et al.  Anisotropic Character of Talc Surfaces as Revealed by Streaming Potential Measurements, Atomic Force Microscopy, Molecular Dynamics Simulations and Contact Angle Measurements , 2007 .

[2]  S. Zec,et al.  The influence of cationic impurities in silica on its crystallization and point of zero charge. , 2007, Journal of colloid and interface science.

[3]  S. Milonjić,et al.  Point of zero charge of different carbides , 2007 .

[4]  D. Bradshaw,et al.  Effect of CMC and pH on the Rheology of Suspensions of Isotropic and Anisotropic Minerals , 2007 .

[5]  P. Bahri,et al.  Polymer flocculation of calcite: Relating the aggregate size to the settling rate , 2006 .

[6]  Pradip,et al.  Zeta potentials in the flotation of oxide and silicate minerals. , 2005, Advances in colloid and interface science.

[7]  D. Fornasiero,et al.  Cu(II) and Ni(II) activation in the flotation of quartz, lizardite and chlorite , 2005 .

[8]  K. Bremmell,et al.  Pentlandite–lizardite interactions and implications for their separation by flotation , 2005 .

[9]  M. Kosmulski pH-dependent surface charging and points of zero charge II. Update. , 2004, Journal of colloid and interface science.

[10]  Marek Kosmulski,et al.  The pH-dependent surface charging and the points of zero charge. , 2002, Journal of colloid and interface science.

[11]  Serna,et al.  Surface Instability of Serpentine in Aqueous Suspensions. , 2000, Journal of colloid and interface science.

[12]  O. Pokrovsky,et al.  Processes at the magnesium-bearing carbonates/solution interface. I. A surface speciation model for magnesite , 1999 .

[13]  J. Finch,et al.  An agglomeration study of sulphide minerals using zeta potential and settling rate. Part II: sphalerite/pyrite and sphalerite/galena , 1998 .

[14]  J. Finch,et al.  An agglomeration study of sulphide minerals using zeta-potential and settling rate. Part 1: Pyrite and galena , 1998 .

[15]  W. Sharp,et al.  Dana's minerals and how to study them : after Edward Salisbury Dana , 1998 .

[16]  J. Ralston,et al.  Recovery mechanisms for pentlandite and MgO-bearing gangue minerals in nickel ores from Western Australia , 1997 .

[17]  N. Gence,et al.  Surface properties of magnesite and surfactant adsorption mechanism , 1995 .

[18]  J. Leja Surface Chemistry of Froth Flotation , 1982 .

[19]  S. Ardizzone,et al.  The point of zero charge of ruthenium dioxide , 1981 .

[20]  R. J. Hunter Zeta potential in colloid science : principles and applications , 1981 .

[21]  G. E. Agar,et al.  The effect of slime coatings of the serpentine minerals, chrysotile and lizardite, on pentlandite flotation , 1980 .

[22]  J. Kitchener,et al.  The zeta-potentials of natural and synthetic chrysotiles , 1975 .

[23]  J. Lyklema,et al.  Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe2O3) , 1973 .

[24]  Thomas W. Healy,et al.  Adsorption of hydrolyzable metal ions at the oxide—water interface. II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III), and Th(IV) as model systems , 1972 .

[25]  T. Healy,et al.  Adsorption of hydrolyzable metal ions at the oxide—water interface. I. Co(II) adsorption on SiO2 and TiO2 as model systems , 1972 .

[26]  J. Lyklema,et al.  Interfacial electrochemistry of haematite (α-Fe2O3) , 1971 .

[27]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .