Robust parameter synthesis for planar higher pair mechanical systems

We present a parameter synthesis algorithm for planar, higher pair mechanical systems. The input is a parametric model of a mechanical system (part shapes and configurations) with nominal values and tolerance intervals for the parameters. The output is revised parameter ranges that guarantee correct kinematic function for all system variations. Nominal values are changed when possible and tolerance intervals are shrunk as a last resort. The algorithm consists of a three-step cycle that detects and eliminates system variations with incorrect kinematic function. The first step finds points in parameter space whose kinematic variation is maximal. The maximum of the higher pairs are derived by contact zone construction and are then combined into system maximums. The second step tests the points for correct kinematic function using configuration space matching and kinematic simulation. The third step adjusts the parameter ranges to exclude the points that fail the test. The cycle repeats until every point exhibits correct function. We demonstrate the algorithm on five real-world examples.

[1]  Leo Joskowicz,et al.  Towards robust kinematic synthesis of mechanical systems , 2003 .

[2]  H.J.J. Kals,et al.  Current status of CAT systems , 1998 .

[3]  Kenneth W. Chase,et al.  A SECOND-ORDER METHOD FOR ASSEMBLY TOLERANCE ANALYSIS , 1999 .

[4]  Leo Joskowicz,et al.  Parametric kinematic tolerance analysis of planar mechanisms , 1997, Comput. Aided Des..

[5]  L. Joskowicz,et al.  Computational Kinematic Analysis of Higher Pairs with Multiple Contacts , 1995 .

[6]  Zuomin Dong,et al.  Automated Cost Modeling for Tolerance Synthesis Using Manufacturing Process Data, Knowledge Reasoning and Optimization , 1998 .

[7]  Philippe Serré,et al.  The TTRSs : 13 Constraints for Dimensioning and Tolerancing , 1998 .

[8]  Jorge Angeles,et al.  Optimization of cam mechanisms , 1991 .

[9]  Arthur G. Erdman,et al.  Modern kinematics : developments in the last forty years , 1993 .

[10]  Ralf Schultheiss,et al.  Detect the Unexpected — How to Find and Avoid Unexpected Tolerance Problems in Mechanisms , 1999 .

[11]  Pierre Bourdet,et al.  Geometric Product Specification and Verification: Integration of Functionality , 2003 .

[12]  Rajan Ramaswamy Computer tools for preliminary parametric design , 1993 .

[13]  K. Young,et al.  AMERICAN SOCIETY OF MECHANICAL ENGINEERS. , 1880, Science.

[14]  William L. Cleghorn,et al.  Allocation of Dimensional Tolerances for Multiple Loop Planar Mechanisms , 1989 .

[15]  Daniel E. Whitney,et al.  Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies , 1994 .

[16]  Kwun-Lon Ting,et al.  Performance Quality and Tolerance Sensitivity of Mechanisms , 1996 .

[17]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..

[18]  Pierre Bourdet,et al.  A Computation Method for the Consequences of Geometric Errors in Mechanisms , 1998 .

[19]  Leo Joskowicz,et al.  Automated modeling and kinematic simulation of mechanisms , 1993, Comput. Aided Des..

[20]  Masatomo Inui,et al.  Configuration space based analysis of position uncertainties of parts in an assembly , 1996 .

[21]  H.J.J. Kals,et al.  Global consistency of tolerances , 1999 .

[22]  Spencer P. Magleby,et al.  A Comprehensive System for Computer-Aided Tolerance Analysis of 2-D and 3-D Mechanical Assemblies , 1998 .

[23]  Mark H. Overmars,et al.  Shape tolerance in feeding and fixturing , 1998 .

[24]  Kenneth W. Chase,et al.  A survey of research in the application of tolerance analysis to the design of mechanical assemblies , 1991 .

[25]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[26]  Elisha Sacks,et al.  Parameter synthesis of higher kinematic pairs , 2003, Comput. Aided Des..

[27]  Elisha Sacks,et al.  Nonlinear kinematic tolerance analysis of planar mechanical systems , 2003, Comput. Aided Des..

[28]  Joshua U. Turner,et al.  Estimating gradients for statistical tolerance synthesis , 1996, Comput. Aided Des..

[29]  I. I. Artobolevskiĭ Mechanisms in modern engineering design , 1975 .