Theoretically Grounded Acceleration Techniques for Simulated Annealing
暂无分享,去创建一个
[1] Pierre-Jean Reissman,et al. On Simulated annealing with temperature-dependent energy and temperature-dependent communication , 2011 .
[2] O. Catoni. Simulated annealing algorithms and Markov chains with rare transitions , 1999 .
[3] P. Moral,et al. On the Convergence and the Applications of the Generalized Simulated Annealing , 1999 .
[4] M. Émery,et al. Seminaire de Probabilites XXXIII , 1999 .
[5] Pierre-Jean Reissman,et al. From simulated annealing to stochastic continuation: a new trend in combinatorial optimization , 2012, Journal of Global Optimization.
[6] J Besag,et al. DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS , 1993 .
[7] Sheldon Howard Jacobson,et al. The Theory and Practice of Simulated Annealing , 2003, Handbook of Metaheuristics.
[8] B. Gidas. Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .
[9] Isabelle E. Magnin,et al. Stochastic nonlinear image restoration using the wavelet transform , 2003, IEEE Trans. Image Process..
[10] M. Desai. Some results characterizing the finite time behaviour of the simulated annealing algorithm , 1999 .
[11] P. C. Schuur,et al. Classification of Acceptance Criteria for the Simulated Annealing Algorithm , 1997, Math. Oper. Res..
[12] Bruce E. Hajek,et al. Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..
[13] Gabriele Grillo,et al. Simulated annealing with time-dependent energy function , 1993 .
[14] Bruno Sixou,et al. Optimal inverse treatment planning by stochastic continuation , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
[15] Isabelle E. Magnin,et al. Optimization by Stochastic Continuation , 2010, SIAM J. Imaging Sci..
[16] Mila Nikolova,et al. Markovian reconstruction using a GNC approach , 1999, IEEE Trans. Image Process..
[17] H. Cohn,et al. Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..
[18] T. Chiang,et al. On the convergence rate of annealing processes , 1987 .
[19] Olivier Catoni,et al. Metropolis, Simulated Annealing, and Iterated Energy Transformation Algorithms: Theory and Experiments , 1996, J. Complex..
[20] Sheldon Howard Jacobson,et al. Analysis of Static Simulated Annealing Algorithms , 2002 .
[21] Isabelle E. Magnin,et al. A Stochastic Continuation Approach to Piecewise Constant Reconstruction , 2007, IEEE Transactions on Image Processing.
[22] Chiang Tzuu-Shuh,et al. On the convergence rate of annealing processes , 1988 .
[23] O. Catoni. Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .
[24] Andrew Blake,et al. Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.
[25] Mark Fielding,et al. Simulated Annealing With An Optimal Fixed Temperature , 2000, SIAM J. Optim..
[26] Isabelle E. Magnin,et al. 3-D reconstruction from a few radiographs using the metropolis dynamics with annealing , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).
[27] Robert Azencott,et al. Simulated annealing : parallelization techniques , 1992 .
[28] Mads Nielsen. Graduated Nonconvexity by Functional Focusing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[29] Matthias Löwe. Simulated annealing with time-dependent energy function via Sobolev inequalities , 1996 .
[30] Isabelle E. Magnin,et al. Simulated annealing, acceleration techniques, and image restoration , 1999, IEEE Trans. Image Process..
[31] Sheldon H. Jacobson,et al. Finite-Time Performance Analysis of Static Simulated Annealing Algorithms , 2002, Comput. Optim. Appl..
[32] J. Doob. Stochastic processes , 1953 .
[33] Sheldon H. Jacobson,et al. On the convergence of generalized hill climbing algorithms , 2002, Discret. Appl. Math..