Artificial magnetic field induced by an evanescent wave

Cold atomic gases are perfect laboratories for realization of quantum simulators. In order to simulate solid state systems in the presence of magnetic fields special effort has to be made because atoms are charge neutral. There are different methods for realization of artificial magnetic fields, that is the creation of specific conditions so that the motion of neutral particles mimics the dynamics of charged particles in an effective magnetic field. Here, we consider adiabatic motion of atoms in the presence of an evanescent wave. Theoretical description of the adiabatic motion involves artificial vector and scalar potentials related to the Berry phases. Due to the large gradient of the evanescent field amplitude, the potentials can be strong enough to induce measurable effects in cold atomic gases. We show that the resulting artificial magnetic field is able to induce vortices in a Bose-Einstein condensate trapped close to a surface of a prism where the evanescent wave is created. We also analyze motion of an atomic cloud released from a magneto-optical trap that falls down on the surface of the prism. The artificial magnetic field is able to reflect falling atoms that can be observed experimentally.

[1]  V. Lembessis,et al.  Artificial gauge potentials for neutral atoms: an application in evanescent light fields , 2014 .

[2]  D Meschede,et al.  Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. , 2007, Physical review letters.

[3]  A. Rauschenbeutel,et al.  State-dependent potentials in a nanofiber-based two-color trap for cold atoms , 2013, 1306.5605.

[4]  J. Fiutowski,et al.  Evanescent wave mirror for cold atoms—A quasi-resonant case , 2013 .

[5]  J. Dalibard,et al.  Geometric potentials in quantum optics: A semi-classical interpretation , 2008, 0807.4066.

[6]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[7]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[8]  Peng Zhang,et al.  Spin-Orbit Coupling Induced Coherent Production of Feshbach Molecules in a Degenerate Fermi Gas , 2013, 1306.4568.

[9]  R. A. Williams,et al.  Direct observation of zitterbewegung in a Bose–Einstein condensate , 2013, 1303.0914.

[10]  Simulation of non-Abelian lattice gauge theories with a single component atomic gas , 2014 .

[11]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[12]  Waseem Bakr,et al.  Two-dimensional quantum gas in a hybrid surface trap , 2009 .

[13]  Victor Galitski,et al.  Spin–orbit coupling in quantum gases , 2013, Nature.

[14]  Jon H. Shirley,et al.  Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .

[15]  K. Sacha,et al.  Erratum: Simulation of non-Abelian lattice gauge fields with a single-component gas , 2014, 1403.1221.

[16]  Tarik Yefsah,et al.  Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.

[17]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  G. Juzeliūnas,et al.  Chapter 12 – Optical Manipulation of Ultracold Atoms , 2008 .

[19]  Jian-Wei Pan,et al.  Stability of excited dressed states with spin-orbit coupling , 2012, 1208.4941.

[20]  Hui Zhai,et al.  Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. , 2012, Physical review letters.

[21]  P. Hannaford,et al.  From Magnetic Mirrors to Atom Chips , 2011 .

[22]  Y. Zel’dovich The Quasienergy of a Quantum-mechanical System Subjected to a Periodic Action , 1967 .

[23]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[24]  D. Kern,et al.  Plasmonically tailored micropotentials for ultracold atoms , 2011 .

[25]  N. Goldman,et al.  Light-induced gauge fields for ultracold atoms , 2013, Reports on progress in physics. Physical Society.

[26]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[27]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[28]  H. Kimble,et al.  Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.

[29]  Chunlei Qu,et al.  Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate , 2013, 1301.0658.

[30]  V. Bagnato,et al.  New Physics with Evanescent Wave Atomic Mirrors: The van der Waals Force and Atomic Diffraction , 1998 .

[31]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[32]  C. Zimmermann,et al.  Towards surface quantum optics with Bose–Einstein condensates in evanescent waves , 2009 .

[33]  H. Kimble,et al.  A state-insensitive, compensated nanofiber trap , 2011, 1110.5372.

[34]  Peng Zhang,et al.  Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases , 2013, Nature Physics.

[35]  Laurence Jacobs,et al.  Lattice gauge theories: an introduction , 2008 .

[36]  Hui Zhai,et al.  Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.