Artificial magnetic field induced by an evanescent wave
暂无分享,去创建一个
[1] V. Lembessis,et al. Artificial gauge potentials for neutral atoms: an application in evanescent light fields , 2014 .
[2] D Meschede,et al. Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. , 2007, Physical review letters.
[3] A. Rauschenbeutel,et al. State-dependent potentials in a nanofiber-based two-color trap for cold atoms , 2013, 1306.5605.
[4] J. Fiutowski,et al. Evanescent wave mirror for cold atoms—A quasi-resonant case , 2013 .
[5] J. Dalibard,et al. Geometric potentials in quantum optics: A semi-classical interpretation , 2008, 0807.4066.
[6] C. Kane,et al. Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.
[7] J. Dalibard,et al. Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.
[8] Peng Zhang,et al. Spin-Orbit Coupling Induced Coherent Production of Feshbach Molecules in a Degenerate Fermi Gas , 2013, 1306.4568.
[9] R. A. Williams,et al. Direct observation of zitterbewegung in a Bose–Einstein condensate , 2013, 1303.0914.
[10] Simulation of non-Abelian lattice gauge theories with a single component atomic gas , 2014 .
[11] J. Marangos,et al. Electromagnetically induced transparency : Optics in coherent media , 2005 .
[12] Waseem Bakr,et al. Two-dimensional quantum gas in a hybrid surface trap , 2009 .
[13] Victor Galitski,et al. Spin–orbit coupling in quantum gases , 2013, Nature.
[14] Jon H. Shirley,et al. Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .
[15] K. Sacha,et al. Erratum: Simulation of non-Abelian lattice gauge fields with a single-component gas , 2014, 1403.1221.
[16] Tarik Yefsah,et al. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.
[17] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[18] G. Juzeliūnas,et al. Chapter 12 – Optical Manipulation of Ultracold Atoms , 2008 .
[19] Jian-Wei Pan,et al. Stability of excited dressed states with spin-orbit coupling , 2012, 1208.4941.
[20] Hui Zhai,et al. Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. , 2012, Physical review letters.
[21] P. Hannaford,et al. From Magnetic Mirrors to Atom Chips , 2011 .
[22] Y. Zel’dovich. The Quasienergy of a Quantum-mechanical System Subjected to a Periodic Action , 1967 .
[23] G. Floquet,et al. Sur les équations différentielles linéaires à coefficients périodiques , 1883 .
[24] D. Kern,et al. Plasmonically tailored micropotentials for ultracold atoms , 2011 .
[25] N. Goldman,et al. Light-induced gauge fields for ultracold atoms , 2013, Reports on progress in physics. Physical Society.
[26] A. Ludlow,et al. An Atomic Clock with 10–18 Instability , 2013, Science.
[27] J. Dalibard,et al. Many-Body Physics with Ultracold Gases , 2007, 0704.3011.
[28] H. Kimble,et al. Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.
[29] Chunlei Qu,et al. Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate , 2013, 1301.0658.
[30] V. Bagnato,et al. New Physics with Evanescent Wave Atomic Mirrors: The van der Waals Force and Atomic Diffraction , 1998 .
[31] I. B. Spielman,et al. Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.
[32] C. Zimmermann,et al. Towards surface quantum optics with Bose–Einstein condensates in evanescent waves , 2009 .
[33] H. Kimble,et al. A state-insensitive, compensated nanofiber trap , 2011, 1110.5372.
[34] Peng Zhang,et al. Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases , 2013, Nature Physics.
[35] Laurence Jacobs,et al. Lattice gauge theories: an introduction , 2008 .
[36] Hui Zhai,et al. Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.