A Region-based Coupled MRF Model for Coarse Image Region Segmentation toward its VLSI Implementation

[1]  Iasonas Kokkinos,et al.  Synergy between Object Recognition and Image Segmentation Using the Expectation-Maximization Algorithm , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  King Ngi Ngan,et al.  FaceSeg: Automatic Face Segmentation for Real-Time Video , 2009, IEEE Transactions on Multimedia.

[3]  Okada Masato,et al.  Coarse image region segmentation using a region-based coupled MRF model and its CMOS circuit implementation , 2008 .

[4]  Xiaojun Qi,et al.  A novel fusion approach to content-based image retrieval , 2005, Pattern Recognit..

[5]  Jin Luo,et al.  Analog hardware for detecting discontinuities in early vision , 1990, International Journal of Computer Vision.

[6]  Kazuyuki Tanaka,et al.  Coupled Markov random field models with phases as line field and region field , 2003, Systems and Computers in Japan.

[7]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Markus Loose,et al.  A Scalable Switched Capacitor Realization of the Resistive Fuse Network , 2002 .

[9]  Janusz Konrad,et al.  Fractal image compression with region-based functionality , 2002, IEEE Trans. Image Process..

[10]  Aggelos K. Katsaggelos,et al.  Hybrid image segmentation using watersheds and fast region merging , 1998, IEEE Trans. Image Process..

[11]  Takashi Matsumoto,et al.  A Floating-Gate MOS Implementation of Resistive Fuse , 1998, Neural Computation.

[12]  John L. Wyatt,et al.  CMOS resistive fuses for image smoothing and segmentation , 1992 .

[13]  C Koch,et al.  A two-dimensional analog VLSI circuit for detecting discontinuities in early vision. , 1990, Science.

[14]  A. Lumsdaine,et al.  Nonlinear analog networks for image smoothing and segmentation , 1990, IEEE International Symposium on Circuits and Systems.

[15]  Andrew Blake,et al.  Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Theodosios Pavlidis,et al.  Integrating region growing and edge detection , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.