New designs of fault-tolerant adders in quantum-dot cellular automata

Abstract Quantum-dot cellular automata (QCA) technology has attracted attention as one of the best forms of alternative Nanoscale CMOS technology. It has facilitated the designing of digital circuits with high density and speed. One of the important issues in QCA technology is designing fault-tolerant digital circuits. QCA-based circuits frequently suffer from fabrication and unstable faults: these make them unreliable and susceptible to breakdown. In this paper, two new fault-tolerant 3-input majority gates have been proposed in QCA technology. The robustness of the proposed structures has been evaluated in terms of defects such as cell omission, deposition of extra cell and cell displacement defects. The simulations were performed using the QCA Designer 2.0.03 and QCAPro tools to measure performance and energy consumption. The obtained results indicate that the proposed structures benefit from higher fault-tolerant in comparison to previous designs. Moreover, we provided four new fault-tolerant full-adders and a multi-bit adder using the proposed structures and acceptable results are archived.

[1]  Mehdi Baradaran Tahoori,et al.  Quantum cellular automata: new defects and faults for new devices , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[2]  Saeed Rasouli Heikalabad,et al.  A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis , 2018, The Journal of Supercomputing.

[3]  Bandani Sousan Hojatallah,et al.  Designing and Implementing a Fast and Robust Full-Adder in Quantum-Dot Cellular Automata (QCA) Technology , 2015 .

[4]  Earl E. Swartzlander,et al.  Design of a Goldschmidt iterative divider for quantum-dot cellular automata , 2009, 2009 IEEE/ACM International Symposium on Nanoscale Architectures.

[5]  Heumpil Cho Adder and multiplier design and analysis in quantum-dot cellular automata , 2006 .

[6]  M. M. Abutaleb A novel configurable flip flop design using inherent capabilities of quantum-dot cellular automata , 2018, Microprocess. Microsystems.

[7]  Mostafa Rahimi Azghadi,et al.  Restoring and non-restoring array divider designs in Quantum-dot Cellular Automata , 2015, Inf. Sci..

[8]  Mostafa Rahimi Azghadi,et al.  A new quantum-dot cellular automata full-adder , 2016, 2016 5th International Conference on Computer Science and Network Technology (ICCSNT).

[9]  Fei Peng,et al.  Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata , 2016 .

[10]  Jadav Chandra Das,et al.  Circuit switching with Quantum-Dot Cellular Automata , 2017, Nano Commun. Networks.

[11]  Earl E. Swartzlander,et al.  A First Step Toward Cost Functions for Quantum-Dot Cellular Automata Designs , 2014, IEEE Transactions on Nanotechnology.

[12]  Ronald F. DeMara,et al.  Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder , 2015, Microelectron. J..

[13]  Razieh Farazkish,et al.  Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata , 2015, Microprocess. Microsystems.

[14]  Earl E. Swartzlander,et al.  Adder and Multiplier Design in Quantum-Dot Cellular Automata , 2009, IEEE Transactions on Computers.

[15]  Saket Srivastava,et al.  QCAPro - An error-power estimation tool for QCA circuit design , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[16]  Graham A. Jullien,et al.  Performance comparison of quantum-dot cellular automata adders , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[17]  Omar P. Vilela Neto,et al.  USE: A Universal, Scalable, and Efficient Clocking Scheme for QCA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[18]  A. Safavi,et al.  Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate , 2016 .

[19]  Ismo Hänninen,et al.  Robust Adders Based on Quantum-Dot Cellular Automata , 2007, 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP).

[20]  Yongqiang Zhang,et al.  The Fundamental Primitives with Fault-Tolerance in Quantum-Dot Cellular Automata , 2018, J. Electron. Test..

[21]  Mohammad Mosleh,et al.  A fast wallace-based parallel multiplier in quantum-dot cellular automata , 2018 .

[22]  Sankit R. Kassa,et al.  Energy efficient neoteric design of a 3-input Majority Gate with its implementation and physical proof in Quantum dot Cellular Automata , 2018, Nano Commun. Networks.

[23]  Jing Huang,et al.  On the Tolerance to Manufacturing Defects in Molecular QCA Tiles for Processing-by-wire , 2007, J. Electron. Test..

[24]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[25]  Jadav Chandra Das,et al.  Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication , 2017, IET Circuits Devices Syst..

[26]  Milad Sangsefidi,et al.  Coplanar Full Adder in Quantum-Dot Cellular Automata via Clock-Zone-Based Crossover , 2015, IEEE Transactions on Nanotechnology.

[27]  Nima Jafari Navimipour,et al.  Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata , 2018, Nano Commun. Networks.

[28]  M. M. Abutaleb A novel true random number generator based on QCA nanocomputing , 2018, Nano Commun. Networks.

[29]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[30]  M. M. Abutaleb Robust and efficient quantum-dot cellular automata synchronous counters , 2017, Microelectron. J..

[31]  Mohammad Mohammadi,et al.  An efficient design of full adder in quantum-dot cellular automata (QCA) technology , 2016, Microelectron. J..

[32]  Mohammad Mosleh,et al.  An Overview on RAM Memories in QCA Technology , 2017 .

[33]  Mohammad Mosleh,et al.  A novel fault-tolerant multiplexer in quantum-dot cellular automata technology , 2018, The Journal of Supercomputing.

[34]  M. M. Abutaleb A novel power-efficient high-speed clock management unit using quantum-dot cellular automata , 2017, Journal of Nanoparticle Research.

[35]  Jadav Chandra Das,et al.  Nanocommunication network design using QCA reversible crossbar switch , 2017, Nano Commun. Networks.

[36]  Dharmendra Kumar,et al.  A systematic approach towards fault-tolerant design of QCA circuits , 2019 .

[37]  Jadav Chandra Das,et al.  Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks , 2017, Nano Commun. Networks.

[38]  Bibhash Sen,et al.  Design of Efficient Full Adder in Quantum-Dot Cellular Automata , 2013, TheScientificWorldJournal.

[39]  Bibhash Sen,et al.  On the reliability of majority logic structure in quantum-dot cellular automata , 2016, Microelectron. J..

[40]  Mehdi Baradaran Tahoori,et al.  Defects and faults in quantum cellular automata at nano scale , 2004, 22nd IEEE VLSI Test Symposium, 2004. Proceedings..

[41]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[42]  Jadav Chandra Das,et al.  Design of novel carry save adder using quantum dot-cellular automata , 2017, J. Comput. Sci..

[43]  Gurmohan Singh,et al.  Fault-tolerant design and analysis of QCA-based circuits , 2018, IET Circuits Devices Syst..

[44]  Debasis Mitra,et al.  Design of a practical fault-tolerant adder in QCA , 2016, Microelectron. J..

[45]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[46]  Michael A. Wilson,et al.  Nanotechnology: Basic Science and Emerging Technologies , 2002 .

[47]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[48]  Kenneth Revett,et al.  Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm , 2014, Expert Syst. Appl..

[49]  K. Sridharan,et al.  Low Complexity Design of Ripple Carry and Brent–Kung Adders in QCA , 2012, IEEE Transactions on Nanotechnology.

[50]  Trailokya Nath Sasamal,et al.  An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata , 2016 .

[51]  Keivan Navi,et al.  A Novel Robust QCA Full-adder☆ , 2015 .

[52]  Keivan Navi,et al.  Novel Robust Single Layer Wire Crossing Approach for Exclusive OR Sum of Products Logic Design with Quantum-Dot Cellular Automata , 2014, J. Low Power Electron..

[53]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[54]  K. Sridharan,et al.  Efficient design of Baugh-Wooley multiplier in Quantum-Dot Cellular Automata , 2013, 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013).

[55]  Abdalhossein Rezai,et al.  High-performance full adder architecture in quantum-dot cellular automata , 2017 .