Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction.

Imidazolium ionic liquids (ILs), imidazolylidene N-heterocyclic carbenes (NHCs), and zeolitic imidazolate frameworks (ZIFs) are imidazolate motifs which have been extensively investigated for CO2 adsorption and conversion applications. Summarized in this minireview is the recent progress in the capture, activation, and photochemical reduction of CO2 with these three imidazolate building blocks, from homogeneous molecular entities (ILs and NHCs) to heterogeneous crystalline scaffolds (ZIFs). The developments and existing shortcomings of the imidazolate motifs for their use in CO2 utilizations is assessed, with more of focus on CO2 photoredox catalysis. The opportunities and challenges of imidazolate scaffolds for future advancement of CO2 photochemical conversion for artificial photosynthesis are discussed.

[1]  Xinchen Wang,et al.  Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid , 2015 .

[2]  Xinchen Wang,et al.  Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications , 2015 .

[3]  Bo Wang,et al.  Polymeres graphitisches Kohlenstoffnitrid für die nachhaltige Photoredoxkatalyse , 2015 .

[4]  Xinchen Wang,et al.  Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. , 2015, Angewandte Chemie.

[5]  D. Falvey,et al.  Photochemical Reduction of CO2 Using 1,3-Dimethylimidazolylidene. , 2015, Organic letters.

[6]  Markus Antonietti,et al.  Carbon-doped BN nanosheets for metal-free photoredox catalysis , 2015, Nature Communications.

[7]  Xinchen Wang,et al.  Multifunctional Metal-Organic Frameworks for Photocatalysis. , 2015, Small.

[8]  Dae-Won Park,et al.  Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether , 2015 .

[9]  Arjan W. Kleij,et al.  Sustainable conversion of carbon dioxide: the advent of organocatalysis , 2015 .

[10]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[11]  Kazuhiko Maeda,et al.  Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. , 2015, Angewandte Chemie.

[12]  Dorina F. Sava,et al.  Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. , 2015, Chemical Society reviews.

[13]  Sibo Wang,et al.  Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework , 2015 .

[14]  Xinchen Wang,et al.  Helical graphitic carbon nitrides with photocatalytic and optical activities. , 2014, Angewandte Chemie.

[15]  Jian Sun,et al.  Ionic liquid-based green processes for energy production. , 2014, Chemical Society reviews.

[16]  Kazuhiko Maeda,et al.  The effect of the pore-wall structure of carbon nitride on photocatalytic CO2 reduction under visible light , 2014 .

[17]  Xinchen Wang,et al.  Water oxidation electrocatalysis by a zeolitic imidazolate framework. , 2014, Nanoscale.

[18]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[19]  Sibo Wang,et al.  Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. , 2014, Physical chemistry chemical physics : PCCP.

[20]  Zhimin Liu,et al.  A protic ionic liquid catalyzes CO₂ conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4(1H,3H)-diones. , 2014, Angewandte Chemie.

[21]  Hongming Wang,et al.  Recent advances in carbon dioxide capture, fixation, and activation by using N-heterocyclic carbenes. , 2014, ChemSusChem.

[22]  M. Walter,et al.  Computational and experimental investigations of CO2 and N2O fixation by sterically demanding N-heterocyclic carbenes (NHC) and NHC/borane FLP systems. , 2014, Dalton transactions.

[23]  Xinchen Wang,et al.  Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. , 2014, Angewandte Chemie.

[24]  P. Arnold,et al.  Activation of carbon dioxide and carbon disulfide by a scandium N-heterocyclic carbene complex. , 2014, Dalton transactions.

[25]  A. Corma,et al.  Visible-light photocatalytic conversion of carbon monoxide to methane by nickel(II) oxide. , 2013, Angewandte Chemie.

[26]  Yugen Zhang,et al.  Imidazolium salts and their polymeric materials for biological applications. , 2013, Chemical Society reviews.

[27]  P. Yang,et al.  Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex. , 2013, Journal of the American Chemical Society.

[28]  T. Peng,et al.  Recent advances in the photocatalytic CO2 reduction over semiconductors , 2013 .

[29]  G. Romanos,et al.  Zeolite Imidazolate Framework–Ionic Liquid Hybrid Membranes for Highly Selective CO2 Separation , 2013 .

[30]  J. E. Bennett,et al.  Solid-state covalent capture of CO2 by using N-heterocyclic carbenes. , 2013, Chemistry.

[31]  G. Yap,et al.  Photocatalytic Conversion of CO2 to CO using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties. , 2013, ACS catalysis.

[32]  J. Ying,et al.  Mechanistic Insights into the Reduction of Carbon Dioxide with Silanes over N‐Heterocyclic Carbene Catalysts , 2013 .

[33]  Thomas P. Spaniol,et al.  Molekulares Zinkdihydrid: Stabilisierung durch N-heterocyclische Carbene† , 2013 .

[34]  J. Okuda,et al.  Molecular zinc dihydride stabilized by N-heterocyclic carbenes. , 2013, Angewandte Chemie.

[35]  Yeonji Oh,et al.  Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. , 2013, Chemical Society reviews.

[36]  Chunjuan Zhang,et al.  A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture. , 2013, Chemical communications.

[37]  Xinchen Wang,et al.  Ionic Liquid Co-catalyzed Artificial Photosynthesis of CO , 2013, Scientific Reports.

[38]  C. Daniliuc,et al.  Reactivity of a frustrated lewis pair and small-molecule activation by an isolable Arduengo carbene-B{3,5-(CF3)2C6H3}3 complex. , 2012, Chemistry.

[39]  Efficacy of carbenes for CO2 chemical fixation and activation by their superbasicity/alcohol: a DFT study , 2012 .

[40]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[41]  Christopher D. Windle,et al.  Advances in molecular photocatalytic and electrocatalytic CO2 reduction , 2012 .

[42]  F. Verpoort,et al.  N-Heterocyclic carbene transition metal complexes for catalysis in aqueous media. , 2012, Chemical Society reviews.

[43]  Osamu Ishitani,et al.  Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes , 2012, Proceedings of the National Academy of Sciences.

[44]  G. Yap,et al.  Reaction of carbon dioxide with a palladium-alkyl complex supported by a bis-NHC framework. , 2012, Dalton transactions.

[45]  Thijs J. H. Vlugt,et al.  State-of-the-Art of CO2 Capture with Ionic Liquids , 2012 .

[46]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[47]  E. Chen,et al.  Conjugate-addition organopolymerization: rapid production of acrylic bioplastics by N-heterocyclic carbenes. , 2012, Angewandte Chemie.

[48]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[49]  H. Jia,et al.  Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. , 2012, Chemical Society reviews.

[50]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[51]  C. Suresh,et al.  Assessment of stereoelectronic factors that influence the CO2 fixation ability of N-heterocyclic carbenes: a DFT study. , 2012, The Journal of organic chemistry.

[52]  M. Carreon,et al.  Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate , 2012 .

[53]  R. Rogers,et al.  Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids. , 2011, Angewandte Chemie.

[54]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[55]  C. Suresh,et al.  NHC catalyzed CO2 fixation with epoxides: Probable mechanisms reveal ter molecular pathway , 2011 .

[56]  Liang‐Nian He,et al.  CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion , 2011 .

[57]  Z. Hou,et al.  Carboxylation of alkylboranes by N-heterocyclic carbene copper catalysts: synthesis of carboxylic acids from terminal alkenes and carbon dioxide. , 2011, Angewandte Chemie.

[58]  Frank Glorius,et al.  Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. , 2011, Accounts of chemical research.

[59]  Haoran Li,et al.  Tuning the basicity of ionic liquids for equimolar CO2 capture. , 2011, Angewandte Chemie.

[60]  Jingping Qu,et al.  N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide , 2011 .

[61]  R. Neumann,et al.  Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex. , 2011, Journal of the American Chemical Society.

[62]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[63]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[64]  Joan F. Brennecke,et al.  Ionic Liquids for CO2 Capture and Emission Reduction , 2010 .

[65]  S. Nolan,et al.  Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(I) complexes. , 2010, Angewandte Chemie.

[66]  Yugen Zhang,et al.  Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions , 2010, Proceedings of the National Academy of Sciences.

[67]  S. Dai,et al.  Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems , 2010 .

[68]  E. Fujita,et al.  New directions for the photocatalytic reduction of CO2: Supramolecular, scCO2 or biphasic ionic liquid-ScCO2 systems , 2010 .

[69]  Yong Zhou,et al.  A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. , 2010, Angewandte Chemie.

[70]  Fang Huang,et al.  The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: a computational mechanism study. , 2010, Journal of the American Chemical Society.

[71]  J. Caro,et al.  Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes , 2010, Advanced materials.

[72]  Haoran Li,et al.  Carbon dioxide capture by superbase-derived protic ionic liquids. , 2010, Angewandte Chemie.

[73]  Omar K. Yaghi,et al.  A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. , 2010, Journal of the American Chemical Society.

[74]  S. Nolan,et al.  Carboxylation of C-H bonds using N-heterocyclic carbene gold(I) complexes. , 2010, Journal of the American Chemical Society.

[75]  M. Albrecht,et al.  Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. , 2010, Chemical Society reviews.

[76]  Yugen Zhang,et al.  Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation , 2010 .

[77]  J. Gascon,et al.  Metall‐organische Membranen: hohes Potenzial, große Zukunft? , 2010 .

[78]  Freek Kapteijn,et al.  Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.

[79]  Yugen Zhang,et al.  Unexpected CO2 splitting reactions to form CO with N-heterocyclic carbenes as organocatalysts and aromatic aldehydes as oxygen acceptors. , 2010, Journal of the American Chemical Society.

[80]  R. Noble,et al.  Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture. , 2010, Accounts of chemical research.

[81]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[82]  M. Carreon,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[83]  Z. Tan,et al.  Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Ethyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate [EMIM][FAP] Using Gas-Liquid Chromatography , 2010 .

[84]  Mikkel Jørgensen,et al.  The teraton challenge. A review of fixation and transformation of carbon dioxide , 2010 .

[85]  E. Fujita,et al.  Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. , 2009, Accounts of chemical research.

[86]  Jingping Qu,et al.  N-Heterocyclic Carbene Functionalized Polymer for Reversible Fixation−Release of CO2 , 2009 .

[87]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[88]  Masafumi Yamamoto,et al.  N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. , 2009, Angewandte Chemie.

[89]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[90]  Jackie Y Ying,et al.  Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. , 2009, Angewandte Chemie.

[91]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[92]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[93]  J. Barber Photosynthetic energy conversion: natural and artificial. , 2009, Chemical Society reviews.

[94]  Jingping Qu,et al.  CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides. , 2008, The Journal of organic chemistry.

[95]  Takeshi Ohishi,et al.  Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. , 2008, Angewandte Chemie.

[96]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[97]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[98]  B. Han,et al.  Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. , 2008, Angewandte Chemie.

[99]  B. Han,et al.  CO(2) cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. , 2007, Angewandte Chemie.

[100]  O. E. El Seoud,et al.  Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. , 2007, Biomacromolecules.

[101]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[102]  A. Chakraborty,et al.  Dynamics of solvent and rotational relaxation of coumarin-153 in room-temperature ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate confined in poly(oxyethylene glycol) ethers containing micelles. , 2007, The journal of physical chemistry. B.

[103]  Arne Thomas,et al.  Metallfreie Aktivierung von CO2 mit mesoporösem graphitischem Kohlenstoffnitrid , 2007 .

[104]  M. Antonietti,et al.  Metal-free activation of CO2 by mesoporous graphitic carbon nitride. , 2007, Angewandte Chemie.

[105]  Vincenzo Balzani,et al.  Die Zukunft der Energieversorgung – Herausforderungen und Chancen , 2007 .

[106]  J. Dupont,et al.  Catalytic applications of metal nanoparticles in imidazolium ionic liquids. , 2007, Chemistry.

[107]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[108]  Haitao Zhao,et al.  Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes. , 2006, Journal of the American Chemical Society.

[109]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[110]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[111]  P. Suarez,et al.  Physico-chemical processes in imidazolium ionic liquids. , 2006, Physical chemistry chemical physics : PCCP.

[112]  B. Berne,et al.  Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim+] [PF6(-)]. , 2005, Journal of the American Chemical Society.

[113]  Adelina M. Voutchkova,et al.  Disubstituted imidazolium-2-carboxylates as efficient precursors to N-heterocyclic carbene complexes of Rh, Ru, Ir, and Pd. , 2005, Journal of the American Chemical Society.

[114]  P. Müller,et al.  Efficient homogeneous catalysis in the reduction of CO2 to CO. , 2005, Journal of the American Chemical Society.

[115]  M. Yamashita,et al.  Fixation of both O2 and CO2 from air by a crystalline palladium complex bearing N-heterocyclic carbene ligands. , 2005, Journal of the American Chemical Society.

[116]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[117]  H. Frei,et al.  Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. , 2005, Journal of the American Chemical Society.

[118]  A. Arif,et al.  Reversible carboxylation of N-heterocyclic carbenes. , 2004, Chemical communications.

[119]  J. Brennecke,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids , 2004 .

[120]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[121]  Jiajian Peng,et al.  Alternatives to phosgene and carbon monoxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. , 2003, Angewandte Chemie.

[122]  M. Anpo,et al.  Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites , 2003 .

[123]  O. Walter,et al.  1,3-dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct. , 2003, Chemical communications.

[124]  J. Dupont,et al.  Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. , 2002, Journal of the American Chemical Society.

[125]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[126]  Joan F. Brennecke,et al.  High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems , 2001 .

[127]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[128]  J. Bockris,et al.  The Photoelectrocatalytic Reduction of Carbon Dioxide , 1989 .

[129]  K. Chandrasekaran,et al.  In-situ spectroscopic investigation of adsorbed intermediate radicals in electrochemical reactions: CO2− on platinum , 1987 .

[130]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[131]  J. Lehn,et al.  Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[132]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.