Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy

Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks (m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1$$\end{document}) and Mask-RCNN (m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2$$\end{document}), which are fed with single still-frames I(t). The other two models (M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1$$\end{document}, M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2$$\end{document}) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1$$\end{document}, M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2$$\end{document} are fed with triplets of frames (I(t-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(t-1)$$\end{document}, I(t), I(t+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(t+1)$$\end{document}) to produce the segmentation for I(t). The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.

[1]  NAECON 2018 - IEEE National Aerospace and Electronics Conference , 2018 .

[2]  Lin Yang,et al.  A New Ensemble Learning Framework for 3D Biomedical Image Segmentation , 2018, AAAI.

[3]  Mehmet Rasit Yuce,et al.  A Navigation and Pressure Monitoring System Toward Autonomous Wireless Capsule Endoscopy , 2020, IEEE Sensors Journal.

[4]  Xiao Han,et al.  Automatic Segmentation of Pneumothorax in Chest Radiographs Based on a Two-Stage Deep Learning Method , 2022, IEEE Transactions on Cognitive and Developmental Systems.

[5]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Xiaozhi Qi,et al.  Endoscopic Path Planning in Robot-Assisted Endoscopic Nasal Surgery , 2020, IEEE Access.

[7]  J. J. de la Rosette,et al.  Handling and prevention of complications in stone basketing. , 2006, European urology.

[8]  Gianni Borghesan,et al.  ATLAS : AuTonomous intraLuminAl Surgery : System specifications for targeted intraluminal interventions : version 2.0.0. , 2020 .

[9]  R. Leveillee,et al.  Low biopsy volume in ureteroscopy does not affect tumor biopsy grading in upper tract urothelial carcinoma. , 2013, Urologic oncology.

[10]  Elena De Momi,et al.  A Lumen Segmentation Method in Ureteroscopy Images based on a Deep Residual U-Net architecture , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[11]  Juho Kannala,et al.  Mask-RCNN and U-Net Ensembled for Nuclei Segmentation , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[12]  Zheng Liu,et al.  Deep Learning Measures of Effectiveness , 2018, NAECON 2018 - IEEE National Aerospace and Electronics Conference.

[13]  Klaus Schöffmann,et al.  Content-based processing and analysis of endoscopic images and videos: A survey , 2017, Multimedia Tools and Applications.

[14]  A. Jemal,et al.  Cancer statistics, 2020 , 2020, CA: a cancer journal for clinicians.

[15]  Emanuele Frontoni,et al.  Preterm Infants’ Pose Estimation With Spatio-Temporal Features , 2019, IEEE Transactions on Biomedical Engineering.

[16]  Danail Stoyanov,et al.  Deep Learning Based Robotic Tool Detection and Articulation Estimation With Spatio-Temporal Layers , 2019, IEEE Robotics and Automation Letters.

[17]  J. W. Segura URETEROSCOPY , 1986, The Lancet.

[18]  Antonio M. López,et al.  A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images , 2016, Journal of healthcare engineering.

[19]  M. Cosentino,et al.  Upper urinary tract urothelial cell carcinoma: location as a predictive factor for concomitant bladder carcinoma , 2013, World Journal of Urology.

[20]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[21]  A. Jemal,et al.  Colorectal cancer statistics, 2020 , 2020, CA: a cancer journal for clinicians.