Bispectral analysis of two-dimensional random processes

The extension of bispectral analysis from one-dimensional random processes (e.g. time series) to two-dimensional random processes is presented. Use of the symmetry properties of the bispectrum reduces the number of computations considerably. Numerical simulations demonstrate the ability of two-dimensional bispectral estimation to detect quadratic phase coupling between waves traveling in different directions. By windowing the data, bicoherence leakage can be reduced. >

[1]  Y. Sato,et al.  A Method of Self-Recovering Equalization for Multilevel Amplitude-Modulation Systems , 1975, IEEE Trans. Commun..

[2]  Michael G. Larimore,et al.  Convergence behavior of the constant modulus algorithm , 1983, ICASSP.

[3]  A. Benveniste,et al.  Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .

[4]  E. Powers,et al.  Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions , 1979, IEEE Transactions on Plasma Science.

[5]  M. Rosenblatt,et al.  ASYMPTOTIC THEORY OF ESTIMATES OF kTH-ORDER SPECTRA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Kenneth R. Laker,et al.  A convergence model for the analysis of some blind equalization algorithms , 1989, IEEE International Symposium on Circuits and Systems,.

[7]  G. J. Foschini,et al.  Equalizing without altering or detecting data , 1985, AT&T Technical Journal.

[8]  S. Elgar,et al.  Statistics of bicoherence and biphase , 1989 .

[9]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[10]  M. R. Raghuveer,et al.  Two-dimensional Non-minimum Phase Signal Reconstruction , 1989, Workshop on Higher-Order Spectral Analysis.

[11]  H. Bartelt,et al.  Shift-invariant imaging of photon-limited data using bispectral analysis , 1985 .

[12]  Georgios B. Giannakis,et al.  ARMA modeling and phase reconstruction of multidimensional non-Gaussian processes using cumulants , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[13]  R. Haubrich Earth noise, 5 to 500 millicycles per second: 1. Spectral stationarity, normality, and nonlinearity , 1965 .

[14]  Robert Price,et al.  A useful theorem for nonlinear devices having Gaussian inputs , 1958, IRE Trans. Inf. Theory.

[15]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.