Thermodynamic properties of 1,1,1,2-tetrafluoroethane (R-134a) + 2,3,3,3-tetrafluoropropene (R-1234yf) mixtures: Measurements of the critical parameters and a mixture model based on the multi-fluid approximation

Abstract Thermodynamic properties are discussed for 1,1,1,2-tetrafluoroethane (R-134a) + 2,3,3,3-tetrafluoropropene (R-1234yf) mixtures. The critical temperatures, densities, and pressures experimentally determined are first presented with their uncertainties. Subsequently a mixture model for calculations of thermodynamic properties is formulated using the multi-fluid approximation. Comparisons to experimental data show that the mixture model calculates the vapor–liquid equilibrium and densities of the mixtures with reasonable accuracies. The critical parameters are also well represented by the mixture model.

[1]  Guangming Chen,et al.  An experimental study of PVTx properties in the gas phase for binary mixtures of HFC-161 and HFC-32 , 2006 .

[2]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[3]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[4]  Eric W. Lemmon,et al.  A Generalized Model for the Thermodynamic Properties of Mixtures , 1999 .

[5]  Y. Higashi Critical parameters for HFC134a, HFC32 and HFC125 , 1994 .

[6]  R. Akasaka,et al.  Measurements of PρT properties, vapor pressures, saturated densities, and critical parameters for R 1234ze(Z) and R 245fa , 2015 .

[7]  R. Akasaka Thermodynamic property models for the difluoromethane (R-32) + trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and difluoromethane + 2,3,3,3-tetrafluoropropene (R-1234yf) mixtures , 2013 .

[8]  Y. Higashi Vapor-liquid equilibrium, coexistence curve, and critical locus for difluoromethane + pentafluoroethane (R-32 + R-125) , 1997 .

[9]  Barbara Haviland Minor,et al.  HFO-1234yf Performance in a Beverage Cooler , 2010 .

[10]  R. Akasaka Calculation of the critical point for mixtures using mixture models based on Helmholtz energy equations of state , 2008 .

[11]  Eric W. Lemmon,et al.  Equations of State for Mixtures of R-32, R-125, R-134a, R-143a, and R-152a , 2004 .

[12]  Ryo Akasaka,et al.  Measurements of saturated densities and critical parameters for the binary mixture of 2,3,3,3-tetrafluoropropene (R-1234yf) + difluoromethane (R-32) , 2013 .

[13]  H. Baehr,et al.  An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2‐Tetrafluoroethane (HFC‐134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa , 1994 .

[14]  Chaobin Dang,et al.  Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a , 2013 .

[15]  Y. Higashi Vapor-liquid equilibrium, coexistence curve, and critical locus for binary HFC-32/HFC-134a mixture , 1995 .

[16]  Eric W. Lemmon,et al.  Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p–ρ–T Measurements and an Equation of State , 2011 .