TRIM67 regulates exocytic mode and neuronal morphogenesis via SNAP47

[1]  S. Gupton,et al.  The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis , 2020, bioRxiv.

[2]  S. Gupton,et al.  SNARE-Mediated Exocytosis in Neuronal Development , 2020, Frontiers in Molecular Neuroscience.

[3]  Zhijun Liu,et al.  Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly , 2020, Nature Communications.

[4]  O. Shupliakov,et al.  Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of Exocytotic Contents , 2020, Cell reports.

[5]  J. Baker,et al.  Gene expression across mammalian organ development , 2019, Nature.

[6]  S. Gupton,et al.  A pair of E3 ubiquitin ligases compete to regulate filopodial dynamics and axon guidance , 2019, bioRxiv.

[7]  E. Soriano,et al.  Syntaxin-1/TI-VAMP SNAREs interact with Trk receptors and are required for neurotrophin-dependent outgrowth , 2018, Oncotarget.

[8]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[9]  E. Karatekin Toward a unified picture of the exocytotic fusion pore , 2018, FEBS letters.

[10]  Huisheng Liu,et al.  Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis , 2018, Cell.

[11]  S. Gupton,et al.  Mammalian TRIM67 Functions in Brain Development and Behavior , 2018, eNeuro.

[12]  S. Gomez,et al.  Spatiotemporal organization of exocytosis emerges during neuronal shape change , 2018, The Journal of cell biology.

[13]  D. Perrais,et al.  Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis , 2017, Nature Communications.

[14]  K. Thorn,et al.  α-Synuclein Promotes Dilation of the Exocytotic Fusion Pore , 2017, Nature Neuroscience.

[15]  Lars E. Borm,et al.  Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells , 2016, Cell.

[16]  O. Shupliakov,et al.  Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane , 2016, Nature Communications.

[17]  M. Lindau,et al.  v-SNARE transmembrane domains function as catalysts for vesicle fusion , 2016, eLife.

[18]  Reid H. J. Olsen,et al.  Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory , 2016, The Journal of Neuroscience.

[19]  A. Egner,et al.  Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state , 2016, Cellular and Molecular Life Sciences.

[20]  Akihiro Kusumi,et al.  Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane , 2016, Molecular biology of the cell.

[21]  J. Rothman,et al.  Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[22]  C. Gauchy,et al.  The Q-soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (Q-SNARE) SNAP-47 Regulates Trafficking of Selected Vesicle-associated Membrane Proteins (VAMPs)* , 2015, The Journal of Biological Chemistry.

[23]  Hye-Won Shin,et al.  SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles , 2015, Biology Open.

[24]  F. Polleux,et al.  SNAREs Controlling Vesicular Release of BDNF and Development of Callosal Axons. , 2015, Cell reports.

[25]  Jinzhong Zhang,et al.  Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells. , 2015, Biophysical journal.

[26]  Robert E. Campbell,et al.  pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis , 2014, The Journal of cell biology.

[27]  Malika Charrad,et al.  NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set , 2014 .

[28]  P. Gestraud,et al.  Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension , 2014, Molecular biology of the cell.

[29]  S. Gupton,et al.  A novel Netrin-1–sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching , 2014, The Journal of cell biology.

[30]  Hsueh-Cheng Chiang,et al.  Exocytosis and endocytosis: modes, functions, and coupling mechanisms. , 2014, Annual review of physiology.

[31]  Enrico Gratton,et al.  Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes , 2013, Proceedings of the National Academy of Sciences.

[32]  T. Galli,et al.  Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain* , 2013, The Journal of Biological Chemistry.

[33]  R. Tsien,et al.  Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. , 2013, Annual review of physiology.

[34]  Khuloud Jaqaman,et al.  Regulation from within: the cytoskeleton in transmembrane signaling. , 2012, Trends in cell biology.

[35]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[36]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[37]  G. Meroni,et al.  TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation , 2012, IUBMB life.

[38]  Craig C. Garner,et al.  v-SNARE Composition Distinguishes Synaptic Vesicle Pools , 2011, Neuron.

[39]  Pere Roca-Cusachs,et al.  Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading , 2011, Proceedings of the National Academy of Sciences.

[40]  Howard A Stone,et al.  Mechanics of surface area regulation in cells examined with confined lipid membranes , 2011, Proceedings of the National Academy of Sciences.

[41]  Y. Loh,et al.  A distinct trans-Golgi network subcompartment for sorting of synaptic and granule proteins in neurons and neuroendocrine cells , 2011, Journal of Cell Science.

[42]  E. Dent,et al.  Nucleofection and Primary Culture of Embryonic Mouse Hippocampal and Cortical Neurons , 2011, Journal of visualized experiments : JoVE.

[43]  T. Südhof,et al.  Push-and-pull regulation of the fusion pore by synaptotagmin-7 , 2010, Proceedings of the National Academy of Sciences.

[44]  A. Miyawaki,et al.  Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. , 2010, The Biochemical journal.

[45]  S. Gupton,et al.  Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. , 2010, Developmental cell.

[46]  E. Engle,et al.  Human genetic disorders of axon guidance. , 2010, Cold Spring Harbor perspectives in biology.

[47]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .

[48]  K. Pfenninger Plasma membrane expansion: a neuron's Herculean task , 2009, Nature Reviews Neuroscience.

[49]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[50]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[51]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[52]  S. Rizzoli,et al.  Kiss‐and‐run, Collapse and ‘Readily Retrievable’ Vesicles , 2007, Traffic.

[53]  Liming He,et al.  The debate on the kiss-and-run fusion at synapses , 2007, Trends in Neurosciences.

[54]  R. Adolphs,et al.  Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity , 2007, Nature Reviews Neuroscience.

[55]  Baljit S. Khakh,et al.  Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy , 2007, Proceedings of the National Academy of Sciences.

[56]  Hervé Rigneault,et al.  Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork , 2006, The EMBO journal.

[57]  H. Urlaub,et al.  Identification of SNAP-47, a Novel Qbc-SNARE with Ubiquitous Expression* , 2006, Journal of Biological Chemistry.

[58]  T. Cox,et al.  Subclassification of the RBCC/TRIM Superfamily Reveals a Novel Motif Necessary for Microtubule Binding* , 2006, Journal of Biological Chemistry.

[59]  A. Elhamdani,et al.  Double Patch Clamp Reveals That Transient Fusion (Kiss-and-Run) Is a Major Mechanism of Secretion in Calf Adrenal Chromaffin Cells: High Calcium Shifts the Mechanism from Kiss-and-Run to Complete Fusion , 2006, The Journal of Neuroscience.

[60]  A. Tanimura,et al.  Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells , 2006, Histochemistry and Cell Biology.

[61]  T. A. Ryan,et al.  The Kinetics of Synaptic Vesicle Reacidification at Hippocampal Nerve Terminals , 2006, The Journal of Neuroscience.

[62]  Trevor Lithgow,et al.  A Complete Set of SNAREs in Yeast , 2004, Traffic.

[63]  Catherine A. Sugar,et al.  Finding the Number of Clusters in a Dataset , 2003 .

[64]  M. Jackson,et al.  Different domains of synaptotagmin control the choice between kiss-and-run and full fusion , 2003, Nature.

[65]  G. Schiavo,et al.  VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes , 2003, FEBS letters.

[66]  P. De Camilli,et al.  Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.

[68]  R. Burgoyne,et al.  Complexin Regulates the Closure of the Fusion Pore during Regulated Vesicle Exocytosis* , 2002, The Journal of Biological Chemistry.

[69]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[70]  A. Prochiantz,et al.  A Common Exocytotic Mechanism Mediates Axonal and Dendritic Outgrowth , 2001, The Journal of Neuroscience.

[71]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[72]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[73]  T. Galli,et al.  A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. , 1998, Molecular biology of the cell.

[74]  G. Alvarez de Toledo,et al.  The exocytotic event in chromaffin cells revealed by patch amperometry , 1997, Nature.

[75]  B. Dasgupta,et al.  N-Ethylmaleimide-sensitive Factor Acts at a Prefusion ATP-dependent Step in Ca2+-activated Exocytosis* , 1996, The Journal of Biological Chemistry.

[76]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[77]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[78]  J. H. Chou,et al.  Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. , 1992, Biochemical and biophysical research communications.

[79]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[80]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[81]  Howard Rosenbaum,et al.  Effects of reading proficiency on embedded stem priming in primary school children , 2021 .

[82]  P. Rousseeuw Finding Groups in Data : An Introduction to Cluster Analysis ( Wiley Series in Probability and Statistics ) by Peter J . Rousseeuw , 2016 .

[83]  Neal S. Grantham Analyzing Multiple Independent Spatial Point Processes , 2012 .

[84]  Liang Gong,et al.  Automatic Detection of Large Dense-Core Vesicles in Secretory Cells and Statistical Analysis of Their Intracellular Distribution , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[85]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .