Boundary states for WZW models
暂无分享,去创建一个
[1] J. Zuber,et al. Boundary conditions in charge conjugate sl(N) WZW theories , 2002, hep-th/0201239.
[2] H. Ishikawa. Boundary states in coset conformal field theories , 2001, hep-th/0111230.
[3] J. Zuber,et al. Conformal Field Theories, Graphs and Quantum Algebras , 2001, hep-th/0108236.
[4] T. Gannon. Boundary conformal field theory and fusion ring representations , 2001, hep-th/0106105.
[5] T. Gannon. Algorithms for affine Kac-Moody algebras , 2001, hep-th/0106123.
[6] T. Gannon. Modular Data: The Algebraic Combinatorics of Conformal Field Theory , 2001, math/0103044.
[7] Michael Mueger. Conformal field theory and Doplicher-Roberts reconstruction , 2000, math-ph/0008027.
[8] J. Fuchs,et al. BOUNDARIES, CROSSCAPS AND SIMPLE CURRENTS , 2000, hep-th/0007174.
[9] C. Schweigert,et al. Solitonic sectors, α-induction and symmetry breaking boundaries , 2000, hep-th/0006181.
[10] J. Zuber,et al. Boundary conditions in rational conformal field theories , 1999, hep-th/9908036.
[11] C. Schweigert,et al. Symmetry breaking boundaries: II. More structures; Examples , 1999, hep-th/9908025.
[12] David E. Evans,et al. Chiral Structure of Modular Invariants for Subfactors , 1999, math/9907149.
[13] C. Schweigert,et al. Symmetry breaking boundary conditions and WZW orbifolds , 1999, hep-th/9905038.
[14] C. Schweigert,et al. Symmetry breaking boundaries I. General theory , 1999, hep-th/9902132.
[15] David E. Evans,et al. Modular Invariants, Graphs and α-Induction¶for Nets of Subfactors. III , 1998, hep-th/9812110.
[16] T. Gannon,et al. On Fusion Algebras and Modular Matrices , 1997, q-alg/9709039.
[17] David E. Evans,et al. Modular Invariants, Graphs and α-Induction¶for Nets of Subfactors I , 1998, hep-th/9801171.
[18] Fengjun Xu. New Braided Endomorphisms from Conformal Inclusions , 1997, q-alg/9708011.
[19] M. Gaberdiel. Fusion of twisted representations , 1996, hep-th/9607036.
[20] A. Sagnotti,et al. Completeness conditions for boundary operators in 2D conformal field theory , 1996, hep-th/9603097.
[21] J. Fuchs,et al. UvA-DARE ( Digital Academic Repository ) A matrix S for all simple current extensions , 2003 .
[22] J. Zuber,et al. From CFT to graphs , 1995, hep-th/9510175.
[23] Xiaoping Xu. On vertex operator algebras , 1996 .
[24] J. Fuchs,et al. From Dynkin diagram symmetries to fixed point structures , 1995, hep-th/9506135.
[25] Yongchang Zhu,et al. Modular invariance of characters of vertex operator algebras , 1995 .
[26] A. Ludwig,et al. Universal noninteger "ground-state degeneracy" in critical quantum systems. , 1991, Physical review letters.
[27] J. Zuber,et al. SU($N$) Lattice Integrable Models Associated With Graphs , 1990 .
[28] K. Intriligator. Bonus symmetry in conformal field theory , 1990 .
[29] Yongchang Zhu. Vertex operator algebras, elliptic functions and modular forms , 1990 .
[30] A. Schellekens,et al. Extended Chiral Algebras and Modular Invariant Partition Functions , 1989 .
[31] J. Cardy. Boundary conditions, fusion rules and the Verlinde formula , 1989 .
[32] E. Verlinde,et al. Fusion Rules and Modular Transformations in 2D Conformal Field Theory , 1988 .
[33] P. Goddard,et al. Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .
[34] R. Slansky. Group theory for unified model building , 1981 .
[35] J. Patera,et al. Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras , 1981 .
[36] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .