Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method

This paper introduces a three dimensional (3D) thermal lattice Boltzmann method for the simulation of electron beam melting processes. The multi-distribution approach incorporates a state-of-the-art volume of fluid free surface method to handle the complex interaction between gas, liquid, and solid phases. The paper provides a detailed explanation of the modeling of the electron beam gun properties, such as the absorption rate and the energy dissipation. Additionally, an algorithm for the construction of a realistic powder bed is discussed. Special emphasis is placed to a parallel, optimized implementation due to the high computational costs of 3D simulations. Finally, a thorough validation of the heat equation and the solid-liquid phase transition demonstrates the capability of the approach to considerably improve the electron beam melting process.

[1]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[2]  Zhang Jian,et al.  3D PHASE FIELD SIMULATION OF EFFECT OF INTERFACIAL ENERGY ANISOTROPY ON SIDEPLATE GROWTH IN Ti–6Al–4V , 2013 .

[3]  David Freed,et al.  Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation , 2000 .

[4]  E. Attar Simulation of Selective Electron Beam Melting Processes , 2011 .

[5]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[6]  Ulrich Rüde,et al.  The CSE Software Challenge — Covering the Complete Stack , 2013, it Inf. Technol..

[7]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[8]  Chen,et al.  Lattice Boltzmann thermohydrodynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[10]  Alejandro L. Garcia,et al.  Stabilization of thermal lattice Boltzmann models , 1995 .

[11]  Suman Chakraborty,et al.  A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow , 2006 .

[12]  Xiaowen Shan,et al.  SIMULATION OF RAYLEIGH-BENARD CONVECTION USING A LATTICE BOLTZMANN METHOD , 1997 .

[13]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[15]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[16]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[17]  Ulrich Rüde,et al.  Large-scale rigid body simulations , 2011 .

[18]  Ulrich Rüde,et al.  Free Surface Lattice-Boltzmann fluid simulations with and without level sets , 2004, VMV.

[19]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[20]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[21]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[22]  S. Osher A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations , 1993 .

[23]  Sauro Succi,et al.  Exponential Tails in Two-Dimensional Rayleigh-Bénard Convection , 1993 .

[24]  Bruce J. Palmer,et al.  Lattice Boltzmann Algorithm for Simulating Thermal Flow in Compressible Fluids , 2000 .

[25]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[26]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[27]  Chuguang Zheng,et al.  Thermal lattice Boltzmann equation for low Mach number flows: decoupling model. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  James A. Warren,et al.  PHASE-FIELD SIMULATION OF SOLIDIFICATION 1 , 2002 .

[29]  J. Stefan Über die Theorie der Eisbildung , 1890 .

[30]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[31]  C. Körner,et al.  Mesoscopic simulation of selective beam melting processes , 2011 .

[32]  B. Nestler,et al.  Phase-field modeling of multi-component systems , 2011 .

[33]  Michihisa Tsutahara,et al.  Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  U. Rüde,et al.  Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming , 2005 .

[35]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[36]  D. Rothman,et al.  Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  J. Stefan,et al.  Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere , 1891 .

[38]  Yuying Yan,et al.  Numerical method of lattice Boltzmann simulation for flow past a rotating circular cylinder with heat transfer , 2008 .

[39]  S. Okayama,et al.  Penetration and energy-loss theory of electrons in solid targets , 1972 .

[40]  K. Fuwa,et al.  The Physical Basis of Analytical Atomic Absorption Spectrometry. The Pertinence of the Beer-Lambert Law. , 1963 .

[41]  Ulrich Rüde,et al.  Lehrstuhl Für Informatik 10 (systemsimulation) Walberla: Hpc Software Design for Computational Engineering Simulations Walberla: Hpc Software Design for Computational Engineering Simulations , 2010 .