Twisted quantum walks, generalised Dirac equation and Fermion doubling

[1]  Paola Boito,et al.  Ranking nodes in directed networks via continuous-time quantum walks , 2022, Quantum Information Processing.

[2]  A. Verga,et al.  Entanglement dynamics and ergodicity breaking in a quantum cellular automaton , 2022, Physical Review B.

[3]  Giuseppe Di Molfetta,et al.  Continuous time limit of the DTQW in 2D+1 and plasticity , 2020, Quantum Information Processing.

[4]  Loic Henriet,et al.  Quantum computing with neutral atoms , 2020, Quantum.

[5]  Pablo Arrighi,et al.  A quantum walk with both a continuous-time limit and a continuous-spacetime limit , 2019, Quantum Information Processing.

[6]  A. Macquet,et al.  Quantum simulation of quantum relativistic diffusion via quantum walks , 2019, Journal of Physics A: Mathematical and Theoretical.

[7]  G. Brennen,et al.  Unitary and Nonunitary Quantum Cellular Automata with Rydberg Arrays. , 2019, Physical review letters.

[8]  anonymous,et al.  Comprehensive review , 2019 .

[9]  C. M. Chandrashekar,et al.  Discrete-time quantum walk algorithm for ranking nodes on a network , 2019, Quantum Inf. Process..

[10]  F. Debbasch Discrete Geometry from Quantum Walks , 2019, Condensed Matter.

[11]  P. Arnault,et al.  Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks , 2018, Physical Review A.

[12]  H. Falomir,et al.  Optical conductivity and transparency in an effective model for graphene , 2017, Physical Review B.

[13]  M. Brachet,et al.  Quantum walk hydrodynamics , 2017, Scientific Reports.

[14]  Mark Saffman,et al.  Quantum computing with neutral atoms , 2017, National science review.

[15]  I. Márquez-Martín,et al.  Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time , 2017 .

[16]  Giuseppe Di Molfetta,et al.  Quantum walks as simulators of neutrino oscillations in a vacuum and matter , 2016, 1607.00529.

[17]  M. Brachet,et al.  Quantum walks and non-Abelian discrete gauge theory , 2016, 1605.01605.

[18]  Stefano Facchini,et al.  Discrete Lorentz covariance for quantum walks and quantum cellular automata , 2014, 1404.4499.

[19]  Giuseppe Di Molfetta,et al.  Quantum Walks in artificial electric and gravitational Fields , 2013, ArXiv.

[20]  Vincent Nesme,et al.  The Dirac equation as a quantum walk: higher dimensions, observational convergence , 2013, 1307.3524.

[21]  Edwin R. Hancock,et al.  A Continuous-Time Quantum Walk Kernel for Unattributed Graphs , 2013, GbRPR.

[22]  Fabrice Debbasch,et al.  Quantum walks as massless Dirac Fermions in curved Space-Time , 2012, 1212.5821.

[23]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[24]  Giuseppe Di Molfetta,et al.  Discrete-time quantum walks: Continuous limit and symmetries , 2011, 1111.2165.

[25]  Dong Zhou,et al.  Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.

[26]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[27]  F. Strauch Connecting the discrete- and continuous-time quantum walks , 2006, quant-ph/0606050.

[28]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[29]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[30]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[31]  Kenneth G. Wilson,et al.  A Remnant of Chiral Symmetry on the Lattice , 1982 .

[32]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[33]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[34]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .