Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting

We address instance-based learning from a perceptual organization standpoint and present methods for dimensionality estimation, manifold learning and function approximation. Under our approach, manifolds in high-dimensional spaces are inferred by estimating geometric relationships among the input instances. Unlike conventional manifold learning, we do not perform dimensionality reduction, but instead perform all operations in the original input space. For this purpose we employ a novel formulation of tensor voting, which allows an N-D implementation. Tensor voting is a perceptual organization framework that has mostly been applied to computer vision problems. Analyzing the estimated local structure at the inputs, we are able to obtain reliable dimensionality estimates at each instance, instead of a global estimate for the entire data set. Moreover, these local dimensionality and structure estimates enable us to measure geodesic distances and perform nonlinear interpolation for data sets with varying density, outliers, perturbation and intersections, that cannot be handled by state-of-the-art methods. Quantitative results on the estimation of local manifold structure using ground truth data are presented. In addition, we compare our approach with several leading methods for manifold learning at the task of measuring geodesic distances. Finally, we show competitive function approximation results on real data.

[1]  Svetlana Lazebnik,et al.  Estimation of Intrinsic Dimensionality Using High-Rate Vector Quantization , 2005, NIPS.

[2]  Serge J. Belongie,et al.  Non-isometric manifold learning: analysis and an algorithm , 2007, ICML '07.

[3]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[4]  Leo Breiman,et al.  Hinging hyperplanes for regression, classification, and function approximation , 1993, IEEE Trans. Inf. Theory.

[5]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[6]  Hongyuan Zha,et al.  Adaptive Manifold Learning , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Martial Hebert,et al.  Scale selection for classification of point-sampled 3D surfaces , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[8]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[9]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[10]  Robert Pless,et al.  Manifold clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[11]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[12]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Serge J. Belongie,et al.  Learning to Traverse Image Manifolds , 2006, NIPS.

[14]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[15]  Eric Saund Labeling of curvilinear structure across scales by token grouping , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  S. Lawrence,et al.  Function Approximation with Neural Networks and Local Methods: Bias, Variance and Smoothness , 1996 .

[17]  David McLean,et al.  On Global–Local Artificial Neural Networks for Function Approximation , 2006, IEEE Transactions on Neural Networks.

[18]  M. Wertheimer A source book of Gestalt psychology. , 1939 .

[19]  Gérard G. Medioni,et al.  Unsupervised Dimensionality Estimation and Manifold Learning in high-dimensional Spaces by Tensor Voting , 2005, IJCAI.

[20]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[21]  Gérard G. Medioni,et al.  Inference of Integrated Surface, Curve, and Junction Descriptions From Sparse 3D Data , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Volker Tresp,et al.  A Bayesian Committee Machine , 2000, Neural Computation.

[23]  Samy Bengio,et al.  SVMTorch: Support Vector Machines for Large-Scale Regression Problems , 2001, J. Mach. Learn. Res..

[24]  Avijit Saha,et al.  Approximation, Dimension Reduction, and Nonconvex Optimization Using Linear Superpositions of Gaussians , 1993, IEEE Trans. Computers.

[25]  Anton Schwaighofer,et al.  Transductive and Inductive Methods for Approximate Gaussian Process Regression , 2002, NIPS.

[26]  Wei Chu,et al.  Bayesian support vector regression using a unified loss function , 2004, IEEE Transactions on Neural Networks.

[27]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[29]  R. von der Heydt,et al.  A computational model of neural contour processing: figure-ground segregation and illusory contours , 1994, Proceedings of PerAc '94. From Perception to Action.

[30]  Geoffrey E. Hinton,et al.  An Alternative Model for Mixtures of Experts , 1994, NIPS.

[31]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[32]  Gérard G. Medioni,et al.  Stereo using monocular cues within the tensor voting framework , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[34]  Terence D. Sanger,et al.  A Tree-Structured Algorithm for Reducing Computation in Networks with Separable Basis Functions , 1991, Neural Computation.

[35]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[36]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[37]  Gérard G. Medioni,et al.  Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  M. Wertheimer,et al.  A source book of Gestalt psychology. , 1939 .

[39]  Stefan Schaal,et al.  Bayesian regression with input noise for high dimensional data , 2006, ICML.

[40]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[41]  Guillermo Sapiro,et al.  Distance Functions and Geodesics on Submanifolds of Rd and Point Clouds , 2005, SIAM J. Appl. Math..

[42]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[43]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[44]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[45]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[46]  Stefan Schaal,et al.  Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space , 2000, ICML.

[47]  Bart Kosko,et al.  The shape of fuzzy sets in adaptive function approximation , 2001, IEEE Trans. Fuzzy Syst..

[48]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[49]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[50]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[52]  Rüdiger von der Heydt,et al.  A computational model of neural contour processing: Figure-ground segregation and illusory contours , 1993, 1993 (4th) International Conference on Computer Vision.

[53]  L. Finkel,et al.  Extraction of perceptually salient contours by striate cortical networks , 1998, Vision Research.

[54]  Stefan Schaal,et al.  Locally Weighted Projection Regression : An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space , 2000 .

[55]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[56]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[57]  Mi-Suen Lee,et al.  N-Dimensional Tensor Voting and Application to Epipolar Geometry Estimation , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[59]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[61]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[62]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[63]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[64]  Geoffrey E. Hinton,et al.  The delve manual , 1996 .

[65]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[66]  Lawrence K. Saul,et al.  Analysis and extension of spectral methods for nonlinear dimensionality reduction , 2005, ICML.

[67]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[68]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[69]  Kim L. Boyer,et al.  A Computational Structure for Preattentive Perceptual Organization: Graphical Enumeration and Voting Methods , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[70]  Yee Whye Teh,et al.  Automatic Alignment of Local Representations , 2002, NIPS.

[71]  Alexander J. Smola,et al.  Sparse Greedy Gaussian Process Regression , 2000, NIPS.

[72]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[73]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[74]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[75]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[76]  Gerald Sommer,et al.  Intrinsic Dimensionality Estimation With Optimally Topology Preserving Maps , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Matthew Brand Nonrigid Embeddings for Dimensionality Reduction , 2005, ECML.