The Local Dark Matter Density from SDSS-SEGUE G-dwarfs

We derive the local dark matter density by applying the integrated Jeans equation method from Silverwood et al. to SDSS-SEGUE G-dwarf data processed and presented by Budenbender et al. We use the MULTINEST Bayesian nested sampling software to fit a model for the baryon distribution, dark matter, and tracer stars, including a model for the `tilt term' that couples the vertical and radial motions, to the data. The α-young population from Budenbender et al. yields the most reliable result of ρ_dm= 0.46^{+0.07}_{-0.08} {GeV cm}^{-3}= 0.012^{+0.002}_{-0.002} M_{☉} pc^{-3}. Our analyses yield inconsistent results for the α-young and α-old data, pointing to problems in the tilt term and its modelling, the data itself, the assumption of a flat rotation curve, or the effects of disequilibria.

[1]  F. Fraternali,et al.  Distribution and kinematics of atomic and molecular gas inside the Solar circle , 2017, 1707.00743.

[2]  T. Prusti,et al.  The intricate Galaxy disk: velocity asymmetries in Gaia-TGAS , 2017, 1706.02748.

[3]  S. Dodelson,et al.  Galactoseismology and the local density of dark matter , 2016, 1608.03338.

[4]  W. Rodejohann,et al.  Testing keV sterile neutrino dark matter in future direct detection experiments , 2016, 1605.02918.

[5]  H. Rix,et al.  SPECTROSCOPIC DETERMINATION OF MASSES (AND IMPLIED AGES) FOR RED GIANTS , 2015, 1511.08204.

[6]  Chao Liu,et al.  Determining the local dark matter density with LAMOST data , 2015, 1510.06810.

[7]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[8]  L. Rauch,et al.  Dark matter direct-detection experiments , 2015, 1509.08767.

[9]  H. Rix,et al.  THE STELLAR POPULATION STRUCTURE OF THE GALACTIC DISK , 2015, 1509.05796.

[10]  D. Hollenbach,et al.  STARS, GAS, AND DARK MATTER IN THE SOLAR NEIGHBORHOOD , 2015, 1509.05334.

[11]  G. Bertone,et al.  A non-parametric method for measuring the local dark matter density , 2015, 1507.08581.

[12]  F. Hessman The difficulty of measuring the local dark matter density , 2015, 1506.00384.

[13]  G. Ven,et al.  The tilt of the velocity ellipsoid in the Milky Way disc , 2014, 1407.4808.

[14]  B. Gibson,et al.  Weighing the local dark matter with RAVE red clump stars , 2014, 1406.6896.

[15]  Jarrett J. Barber,et al.  Bending and breathing modes of the Galactic disc , 2014, 1404.4069.

[16]  J. Read The local dark matter density , 2014, 1404.1938.

[17]  A. Helmi,et al.  Galactic kinematics and dynamics from radial velocity experiment stars , 2014 .

[18]  S. Dong,et al.  Luminosity function suggests up to 100 white dwarfs within 20 pc may be hiding in multiple systems , 2014, 1402.7083.

[19]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[20]  Chao Liu,et al.  SUBSTRUCTURE IN BULK VELOCITIES OF MILKY WAY DISK STARS , 2013, 1309.6314.

[21]  Hans-Walter Rix,et al.  A DIRECT DYNAMICAL MEASUREMENT OF THE MILKY WAY'S DISK SURFACE DENSITY PROFILE, DISK SCALE LENGTH, AND DARK MATTER PROFILE AT 4 kpc ≲ R ≲ 9 kpc , 2013, 1309.0809.

[22]  B. Gibson,et al.  The Wobbly Galaxy : kinematics north and south with RAVE red-clump giants , 2013, 1302.2468.

[23]  L. Baudis A review of direct WIMP search experiments , 2013 .

[24]  David W. Hogg,et al.  THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA , 2012, 1209.0759.

[25]  H. Rix,et al.  THE GRAVITATIONAL POTENTIAL NEAR THE SUN FROM SEGUE K-DWARF KINEMATICS , 2012, 1209.0256.

[26]  D. Schnitzeler,et al.  Modelling the Galactic distribution of free electrons , 2012, 1208.3045.

[27]  T. Beers,et al.  Vertical density waves in the Milky Way disc induced by the Sagittarius dwarf galaxy , 2012, 1207.3083.

[28]  S. Garbari,et al.  A new determination of the local dark matter density from the kinematics of K dwarfs , 2012, 1206.0015.

[29]  B. Yanny,et al.  GALACTOSEISMOLOGY: DISCOVERY OF VERTICAL WAVES IN THE GALACTIC DISK , 2012, 1203.6861.

[30]  N. Evans,et al.  SLICING AND DICING THE MILKY WAY DISK IN THE SLOAN DIGITAL SKY SURVEY , 2011, 1111.6920.

[31]  Chao Liu,et al.  Chemo-orbital evidence from SDSS/SEGUE G-type dwarf stars for a mixed origin of the Milky Way's thick disk , 2012, 1201.1635.

[32]  George Lake,et al.  Limits on the local dark matter density , 2011, 1111.5122.

[33]  E. Sion,et al.  THE WHITE DWARFS WITHIN 20 PARSECS OF THE SUN: KINEMATICS AND STATISTICS , 2009, 0910.1288.

[34]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[35]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[36]  S. Chatterjee,et al.  The Vertical Structure of Warm Ionised Gas in the Milky Way , 2008, Publications of the Astronomical Society of Australia.

[37]  Terry D. Oswalt,et al.  A NEW LOOK AT THE LOCAL WHITE DWARF POPULATION , 2008 .

[38]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[39]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[40]  I. Reid,et al.  HIGH-VELOCITY WHITE DWARFS AND GALACTIC STRUCTURE , 2005 .

[41]  Zheng Zheng,et al.  M Dwarfs from Hubble Space Telescope Star Counts. IV. , 2001, astro-ph/0102442.

[42]  A. Stark,et al.  Local gas without reddening: the contribution of stray radiation to 21 centimeter line measurements. , 1981 .

[43]  J. Bahcall Self-consistent determinations of the total amount of matter near the sun. , 1984 .