Laser beaming demonstrations to high-orbit satellites

A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate state-of-the-art laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1 - 50 kW and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We utilize the return signal from the retro- reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This is especially challenging because the retro-reflectors need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m2 on orbit is needed for this demonstration.