Agglomerative clustering of defects in ultrasonic non-destructive testing using hierarchical mixtures of independent component analyzers

This paper presents a novel procedure to classify materials with different defects, such as holes or cracks, from mixtures of independent component analyzers. The data correspond to the ultrasonic echo recorded after an impact by several sensors on the surface of the material. These signals are modelled by independent component analysis mixture models (ICAMM) for every kind of defect. After the ICAMM model is estimated for every defect, these are merged according to a distance measure that is obtained from the Kullback-Leibler divergence. The hierarchy obtained from the impact-echo data and the learning process allow different kinds of defective materials to be grouped consistently.

[1]  Te-Won Lee,et al.  Capturing nonlinear dependencies in natural images using ICA and mixture of Laplacian distribution , 2006, Neurocomputing.

[2]  Luis Vergara,et al.  A Blind Source Separation Technique for Extracting Sinusoidal Interferences in Ultrasonic Non-Destructive Testing , 2004, J. VLSI Signal Process..

[3]  Addisson Salazar,et al.  Joint Conference on Neural Networks , Orlando , Florida , USA , August 12-17 , 2007 Learning Hierarchies from ICA Mixtures , 2007 .

[4]  J. Gosálbez,et al.  Blind source separation for classification and detection of flaws in impact-echo testing , 2005 .

[5]  J. Antoni Blind separation of vibration components: Principles and demonstrations , 2005 .

[6]  Andreas Stolcke,et al.  Hidden Markov Model} Induction by Bayesian Model Merging , 1992, NIPS.

[7]  Nicholas J. Carino,et al.  The Impact-Echo Method: An Overview , 2001 .

[8]  Thomas L. Griffiths,et al.  Semi-Supervised Learning with Trees , 2003, NIPS.

[9]  Paola Sebastiani,et al.  Cluster analysis of gene expression dynamics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[11]  N. Friedman PCluster : Probabilistic Agglomerative Clustering of Gene Expression Profiles , 2003 .

[12]  Christopher K. I. Williams A MCMC Approach to Hierarchical Mixture Modelling , 1999, NIPS.

[13]  Mary Sansalone,et al.  Impact-echo : nondestructive evaluation of concrete and masonry , 1997 .

[14]  Nuno Vasconcelos,et al.  Learning Mixture Hierarchies , 1998, NIPS.

[15]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[16]  Addisson Salazar,et al.  A general procedure for learning mixtures of independent component analyzers , 2010, Pattern Recognit..

[17]  Katherine A. Heller,et al.  Bayesian hierarchical clustering , 2005, ICML.

[18]  Aapo Hyvärinen,et al.  Topographic Independent Component Analysis , 2001, Neural Computation.

[19]  Christopher M. Bishop,et al.  A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[21]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[22]  Radford M. Neal,et al.  Density Modeling and Clustering Using Dirichlet Diffusion Trees , 2003 .

[23]  Terrence J. Sejnowski,et al.  ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Addisson Salazar,et al.  Learning material defect patterns by separating mixtures of independent component analyzers from NDT sonic signals , 2010 .

[25]  Michael I. Jordan,et al.  Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..

[26]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[27]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[28]  Shivakumar Vaithyanathan,et al.  Model-Based Hierarchical Clustering , 2000, UAI.

[29]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[30]  Stephen J. Roberts,et al.  Variational Mixture of Bayesian Independent Component Analyzers , 2003, Neural Computation.

[31]  Duc Truong Pham,et al.  Clustering techniques and their applications in engineering , 2007 .