Selective Visual Dimension Weighting Deficit after Left Lateral Frontopolar Lesions

The left lateral frontopolar (LFP) cortex showed dimension change-related activation in previous event-related functional magnetic resonance imaging studies of visual singleton feature search with non-brain-lesioned participants. Here, we tested the hypothesis that LFP actively supports changes of attention from the old to the new target-defining dimension in singleton feature search. Singleton detection was selectively slowed in this task when the target-defining dimension changed in patients with left LFP lesions, compared with patients with frontomedian lesions as well as with matched controls without brain lesions. We discuss a potential role of LFP in change detection when the optimal allocation of dimension-based attention is not clearly defined by the task.

[1]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[2]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[3]  Iroise Dumontheil,et al.  The gateway hypothesis of rostral prefrontal cortex (area 10) function , 2007, Trends in Cognitive Sciences.

[4]  M. Rugg,et al.  Retrieval processing and episodic memory , 2000, Trends in Cognitive Sciences.

[5]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[6]  Stefan Pollmann,et al.  Left and right occipital cortices differ in their response to spatial cueing , 2003, NeuroImage.

[7]  R. J. Dolan,et al.  Functional Magnetic Resonance Imaging of Proactive Interference during Spoken Cued Recall , 2002, NeuroImage.

[8]  H J Müller,et al.  Visual search for singleton feature targets within and across feature dimensions , 1995, Perception & psychophysics.

[9]  D. A. Grant,et al.  A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. , 1948, Journal of experimental psychology.

[10]  Stefan Pollmann,et al.  Switching between Dimensions, Locations, and Responses: The Role of the Left Frontopolar Cortex , 2001, NeuroImage.

[11]  H J Müller,et al.  Top-down controlled visual dimension weighting: an event-related fMRI study. , 2002, Cerebral cortex.

[12]  Adrian M Owen,et al.  Distinct roles for lateral and medial anterior prefrontal cortex in contextual recollection. , 2005, Journal of neurophysiology.

[13]  H. Fukuyama,et al.  Dissociable mechanisms of attentional control within the human prefrontal cortex. , 2001, Cerebral cortex.

[14]  S. Pollmann,et al.  A Fronto-Posterior Network Involved in Visual Dimension Changes , 2000, Journal of Cognitive Neuroscience.

[15]  Stefan Pollmann,et al.  Anterior prefrontal cortex contributions to attention control. , 2004, Experimental psychology.

[16]  D. Gitelman,et al.  Functional Specificity of Superior Parietal Mediation of Spatial Shifting , 2001, NeuroImage.

[17]  Hermann J. Müller,et al.  Sources of Top–Down Control in Visual Search , 2009, Journal of Cognitive Neuroscience.

[18]  A. Owen,et al.  Anterior prefrontal cortex: insights into function from anatomy and neuroimaging , 2004, Nature Reviews Neuroscience.

[19]  G. V. Simpson,et al.  Preparatory deployment of attention to motion activates higher-order motion-processing brain regions , 2004, NeuroImage.

[20]  Joseph Krummenacher,et al.  Dimension‐specific intertrial facilitation in visual search for pop‐out targets: Evidence for a top‐down modulable visual short‐term memory effect , 2004 .

[21]  E. Koechlin,et al.  Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  John D E Gabrieli,et al.  Evaluating self-generated information: anterior prefrontal contributions to human cognition. , 2003, Behavioral neuroscience.

[23]  H. Egeth,et al.  Overriding stimulus-driven attentional capture , 1994, Perception & psychophysics.

[24]  E. Koechlin,et al.  The role of the anterior prefrontal cortex in human cognition , 1999, Nature.

[25]  S. Yantis,et al.  Cortical mechanisms of feature-based attentional control. , 2003, Cerebral cortex.

[26]  E. DeYoe,et al.  Graded effects of spatial and featural attention on human area MT and associated motion processing areas. , 1997, Journal of neurophysiology.

[27]  Karl J. Friston,et al.  The functional anatomy of attention to visual motion. A functional MRI study. , 1998, Brain : a journal of neurology.

[28]  T. Robbins,et al.  Contrasting Cortical and Subcortical Activations Produced by Attentional-Set Shifting and Reversal Learning in Humans , 2000, Journal of Cognitive Neuroscience.

[29]  Hermann J. Müller,et al.  The Anterior N1 Component as an Index of Modality Shifting , 2009, Journal of Cognitive Neuroscience.

[30]  J. Gabrieli,et al.  The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex , 2000, Psychobiology.

[31]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[32]  S. Pollmann,et al.  Covert Reorienting and Inhibition of Return: An Event-Related fMRI Study , 2002, Journal of Cognitive Neuroscience.

[33]  Anthony D Wagner,et al.  Executive Control during Episodic Retrieval Multiple Prefrontal Processes Subserve Source Memory , 2002, Neuron.

[34]  H. Müller,et al.  Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account , 1996, Perception & psychophysics.

[35]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[36]  Stefan Pollmann,et al.  Neural correlates of visual dimension weighting , 2006 .