Positive Allosteric Modulators of the α7 Nicotinic Acetylcholine Receptor: SAR Investigation Around PNU-120596.

[1]  H. Arias,et al.  Recent Advances in the Discovery of Nicotinic Acetylcholine Receptor Allosteric Modulators , 2023, Molecules.

[2]  C. Noviello,et al.  Differential interactions of resting, activated, and desensitized states of the α7 nicotinic acetylcholine receptor with lipidic modulators , 2022, bioRxiv.

[3]  Jing Wang,et al.  Synthesis and Biological Evaluation of Novel Triazine Derivatives as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. , 2021, Journal of medicinal chemistry.

[4]  R. Papke,et al.  Therapeutic Targeting of α7 Nicotinic Acetylcholine Receptors , 2021, Pharmacological Reviews.

[5]  S. Sine,et al.  Structure and gating mechanism of the α7 nicotinic acetylcholine receptor , 2021, Cell.

[6]  C. Hopkins,et al.  Selective α7 nicotinic receptor agonists and positive allosteric modulators for the treatment of schizophrenia – a review , 2020, Expert opinion on investigational drugs.

[7]  L. Schaeffer,et al.  Discovery of BNC375, a Potent, Selective, and Orally Available Type I Positive Allosteric Modulator of α7 nAChRs. , 2019, ACS medicinal chemistry letters.

[8]  Arun K. Ghosh,et al.  The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry , 2018, ChemMedChem.

[9]  J. Liou,et al.  Nitro-Group-Containing Drugs. , 2018, Journal of medicinal chemistry.

[10]  D. Bertrand,et al.  The wonderland of neuronal nicotinic acetylcholine receptors , 2017, Biochemical pharmacology.

[11]  C. Bouzat,et al.  Molecular function of α7 nicotinic receptors as drug targets , 2017, The Journal of physiology.

[12]  Anabella Villalobos,et al.  Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. , 2016, ACS chemical neuroscience.

[13]  D. Feuerbach,et al.  Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders , 2016, Cellular and Molecular Life Sciences.

[14]  R. Papke,et al.  Expeditious synthesis, enantiomeric resolution, and enantiomer functional characterization of (4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4BP-TQS): an allosteric agonist-positive allosteric modulator of α7 nicotinic acetylcholine receptors. , 2013, Journal of medicinal chemistry.

[15]  J. Mikkelsen,et al.  Type I and II positive allosteric modulators differentially modulate agonist‐induced up‐regulation of α7 nicotinic acetylcholine receptors , 2012, Journal of neurochemistry.

[16]  Daniel Yohannes,et al.  Discovery and development of α7 nicotinic acetylcholine receptor modulators. , 2011, Journal of medicinal chemistry.

[17]  P. Verhoest,et al.  Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. , 2010, ACS chemical neuroscience.

[18]  M. Hajós,et al.  Targeting α7 Nicotinic Acetylcholine Receptors in the Treatment of Schizophrenia , 2009 .

[19]  D. Bertrand,et al.  Allosteric modulation of nicotinic acetylcholine receptors. , 2007, Biochemical Pharmacology.

[20]  Murali Gopalakrishnan,et al.  Distinct Profiles of α7 nAChR Positive Allosteric Modulation Revealed by Structurally Diverse Chemotypes , 2007, Molecular Pharmacology.

[21]  E. Wong,et al.  Discovery and structure-activity relationship of quinuclidine benzamides as agonists of alpha7 nicotinic acetylcholine receptors. , 2005, Journal of medicinal chemistry.

[22]  Henry A. Lester,et al.  Cys-loop receptors: new twists and turns , 2004, Trends in Neurosciences.

[23]  Michael Krause,et al.  Auditory sensory gating in hippocampus and reticular thalamic neurons in anesthetized rats , 2003, Biological Psychiatry.

[24]  Thomas J. Raub,et al.  In vitro models of the blood-brain barrier. , 1998, Alternatives to laboratory animals : ATLA.

[25]  Peter Willett,et al.  Definitions of "Dissimilarity" for Dissimilarity-Based Compound Selection , 1996 .

[26]  G. Rose,et al.  Dopaminergic and noradrenergic modulation of amphetamine-induced changes in auditory gating , 1991, Brain Research.

[27]  Geri A. Sawada,et al.  Early Preclinical Evaluation of Brain Exposure in Support of Hit Identification and Lead Optimization , 2006 .

[28]  F. Lombardo,et al.  ElogD(oct): a tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds. , 2001, Journal of medicinal chemistry.