Polypyridyl ruthenium complexes as coating agent for the formation of gold and silver nanocomposites in different media. Preliminary luminescence and electrochemical studies

Three polypyridyl ruthenium complexes, [(phen)2Ru(2,2′-p-phenylene-bis(imidazo[4,5-f][1,10])phenanthroline)](X)2 (1·X2), [(phen)2Ru((4-pyridine)oxazo[4,5-f][1,10]phenanthroline)](X)2 (2·X2) and [(phen)2Ru((3-thiophene)imidazo[4,5-f][1,10]phenanthroline)](X)2 (3·X2), X− = PF6− or Cl−, have been used to functionalize and stabilize gold and silver nanoparticles in aqueous and non aqueous (acetonitrile) media. Direct interaction between the metallic nanoparticles and the ruthenium complexes was ensured by bidentate chelating phenanthroline (1), monodentate pyridine (2) or monodentate thiophene (3) groups. The influence of several parameters was studied in order to control the size, shape and stability of the nanocomposites thus formed: the nature of the metallic nanoparticles, the nature of the coating ruthenium complex, the ratio R = [Mn+]/[Ru2+] (M = Ag or Au) and the solvent. The colloidal solutions have been characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Preliminary electrochemical and luminescence measurements have shown the influence of the metallic nanoparticle on the properties of the ruthenium complexes.

[1]  Jung Ho Yu,et al.  Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. , 2006, Angewandte Chemie.

[2]  R. Lennox,et al.  Surface plasmon resonance spectroscopy study of electrostatically adsorbed layers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[3]  R. Murray,et al.  Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters. , 2006, The journal of physical chemistry. B.

[4]  Hans C. Gerritsen,et al.  Fluorescence Enhancement by Metal‐Core/Silica‐Shell Nanoparticles , 2006 .

[5]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[6]  Jinhan Cho,et al.  Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films , 2005 .

[7]  T. Lee,et al.  Synthesis of tetraoctylammonium-protected gold nanoparticles with improved stability. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  O. Tillement,et al.  Nanosized hybrid particles with double luminescence for biological labeling , 2005 .

[9]  C. R. Mayer,et al.  Size controlled formation of silver nanoparticles by direct bonding of ruthenium complexes bearing a terminal mono- or bi-pyridyl group. , 2005, Chemical communications.

[10]  C. Sanchez,et al.  Phosphinine stabilised gold nanoparticles; synthesis and immobilisation on mesoporous materials. , 2004, Chemical communications.

[11]  Christof M Niemeyer,et al.  Reversible switching of DNA-gold nanoparticle aggregation. , 2004, Angewandte Chemie.

[12]  E. Beaurepaire,et al.  Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and imaging at the single-molecule level , 2004 .

[13]  Robert Pansu,et al.  Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+. , 2004, Chemical communications.

[14]  S. Ravaine,et al.  Synthesis of Daisy-Shaped and Multipod-like Silica/Polystyrene Nanocomposites , 2004 .

[15]  S. Friedlander,et al.  Dynamics of Chain Aggregates of Carbon Nanoparticles in Isolation and in Polymer Films: Implications for Nanocomposite Materials , 2004 .

[16]  Do Nam Lee,et al.  Synthesis and characterization of electrochemiluminescent ruthenium(II) complexes containing o-phenanthroline and various alpha-diimine ligands. , 2004, Talanta.

[17]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[18]  Mark A. Rodriguez,et al.  Growth and morphology of cadmium chalcogenides: the synthesis of nanorods, tetrapods, and spheres from CdO and Cd(O2CCH3)2 , 2003 .

[19]  C. R. Mayer,et al.  Nanocomposite systems based on gold nanoparticles and thiometalates. From colloids to networks , 2003 .

[20]  D. Astruc,et al.  Nanoscopic assemblies between supramolecular redox active metallodendrons and gold nanoparticles: synthesis, characterization, and selective recognition of H2PO4-, HSO4-, and adenosine-5'-triphosphate (ATP2-) anions. , 2003, Journal of the American Chemical Society.

[21]  Y. Shon,et al.  [60]Fullerene-linked gold nanoparticles: synthesis and layer-by-layer growth on a solid surface , 2002 .

[22]  Royce W Murray,et al.  Quantized double-layer charging of highly monodisperse metal nanoparticles. , 2002, Journal of the American Chemical Society.

[23]  K. Neoh,et al.  Viologen-Functionalized Conductive Surfaces: Physicochemical and Electrochemical Characteristics, and Stability , 2002 .

[24]  D. Astruc,et al.  Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. , 2002, Journal of the American Chemical Society.

[25]  C. R. Mayer,et al.  A nanoscale hybrid system based on gold nanoparticles and heteropolyanions. , 2002, Angewandte Chemie.

[26]  R. Crooks,et al.  Electrochemical and Spectroscopic Characterization of Viologen-Functionalized Poly(Amidoamine) Dendrimers† , 2001 .

[27]  M. Liu,et al.  In Situ Coordination of Coumarin 7 with Ag(I) at the Air/Water Interface: Characterization and Function of the Monolayers and Langmuir−Schaefer Films , 2001 .

[28]  P. Kamat,et al.  Making Gold Nanoparticles Glow: Enhanced Emission from a Surface-Bound Fluoroprobe , 2000 .

[29]  Kui Huang,et al.  Electrochemical and Spectroscopic Studies of Nitrophenyl Moieties Immobilized on Gold Nanoparticles , 2000 .

[30]  S. Efrima,et al.  Silver Nanoparticles Capped by Long-Chain Unsaturated Carboxylates , 1999 .

[31]  R. Murray,et al.  Redox and fluorophore functionalization of water-soluble, Tiopronin- protected gold clusters , 1999 .

[32]  D. Schiffrin,et al.  Self-Organization of Nanosized Gold Particles , 1998 .

[33]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[34]  R. Murray,et al.  Monolayers in Three Dimensions: Synthesis and Electrochemistry of ω-Functionalized Alkanethiolate-Stabilized Gold Cluster Compounds , 1996 .

[35]  Thomas J. Meyer,et al.  Spatial electrochromism in metallopolymeric films of ruthenium polypyridyl complexes , 1996 .

[36]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[37]  Per Lincoln,et al.  DNA-BINDING OF DELTA- RU(PHEN)2DPPZ 2+ AND LAMBDA- RU(PHEN)2DPPZ 2+ , 1993 .

[38]  E. Amouyal,et al.  Synthesis and study of a mixed-ligand ruthenium(II) complex in its ground and excited states: bis(2,2′-bipyridine)(dipyrido[3,2-a : 2′,3′-c]phenazine-N4N5)ruthenium(II) , 1990 .

[39]  A. Proctor,et al.  Assessment of the .pi.-acceptor capability of selected ligands based on the photoelectron spectra of ruthenium ammine complexes , 1987 .

[40]  D. Camaioni,et al.  Photophysics and cis-trans isomerization of DCM , 1985 .

[41]  J. Savéant,et al.  Linear sweep voltammetry—Bandpass limitations andmaximum usable sweep rate in the study of faradaic processes , 1974 .