Quantum Commuting Circuits and Complexity of Ising Partition Functions

Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal in the sense of standard quantum computation. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy (PH) collapses at the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of the partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable in the strong sense, by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising models with imaginary coupling constants. Specifically, we show that there is no fully polynomial randomized approximation scheme (FPRAS) for Ising models with almost all imaginary coupling constants even on a planar graph of a bounded degree, unless the PH collapses at the third level. Furthermore, we also show a multiplicative approximation of such a class of Ising partition functions is at least as hard as a multiplicative approximation for the output distribution of an arbitrary quantum circuit.

[1]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[2]  D. Aharonov,et al.  Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .

[3]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[4]  Robert Raussendorf,et al.  Classical simulation of measurement-based quantum computation on higher-genus surface-code states , 2012, 1201.6319.

[5]  Jaikumar Radhakrishnan,et al.  Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem , 2005, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[6]  Emanuel Knill,et al.  Fermionic Linear Optics and Matchgates , 2001, ArXiv.

[7]  W Dür,et al.  Classical spin models and the quantum-stabilizer formalism. , 2007, Physical review letters.

[8]  Hussain Anwar,et al.  On the hardness of sampling and measurement-based classical computation , 2013 .

[9]  G. K. Brennen,et al.  Low Depth Quantum Circuits for Ising Models , 2012, 1208.3918.

[10]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[11]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[12]  Maarten Van den Nest,et al.  Commuting quantum circuits: efficient classical simulations versus hardness results , 2013, Quantum Inf. Comput..

[13]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[14]  Daniel A. Lidar On the quantum computational complexity of the Ising spin glass partition function and of knot invariants , 2003, quant-ph/0309064.

[15]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[16]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[17]  Daniel A. Spielman,et al.  PP is closed under intersection , 1991, STOC '91.

[18]  David Zuckerman,et al.  On Unapproximable Versions of NP-Complete Problems , 1996, SIAM J. Comput..

[19]  Greg Kuperberg,et al.  How Hard Is It to Approximate the Jones Polynomial? , 2009, Theory Comput..

[20]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[21]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[22]  Scott Aaronson,et al.  A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[24]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[25]  Yoshifumi Nakata,et al.  Diagonal quantum circuits: Their computational power and applications , 2014, 1405.6552.

[26]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[27]  Y. Nakata,et al.  Generating a state t-design by diagonal quantum circuits , 2013, 1311.1128.

[28]  A. Church A Set of Postulates for the Foundation of Logic , 1932 .

[29]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[30]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[31]  Maarten Van Den Nes Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond , 2010 .

[32]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[33]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[34]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[35]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Ronald de Wolf,et al.  Quantum Proofs for Classical Theorems , 2009, Theory Comput..

[37]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[38]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Richard Jozsa,et al.  Matchgate and space-bounded quantum computations are equivalent , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Matty J Hoban,et al.  Measurement-based classical computation. , 2013, Physical review letters.

[41]  Keisuke Fujii,et al.  A quantum algorithm for additive approximation of Ising partition functions , 2014, ArXiv.

[42]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[43]  W. Dur,et al.  Quantum algorithms for classical lattice models , 2011, 1104.2517.

[44]  Allan Sly,et al.  The Computational Hardness of Counting in Two-Spin Models on d-Regular Graphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[45]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[46]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[47]  Richard Jozsa,et al.  Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..

[48]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[49]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[50]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[51]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[52]  Leslie Ann Goldberg,et al.  The Complexity of Ferromagnetic Ising with Local Fields , 2006, Combinatorics, Probability and Computing.

[53]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[54]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[55]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[56]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[57]  Keisuke Fujii,et al.  Quantum information and statistical mechanics: an introduction to frontier , 2013, 1306.6757.

[58]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[59]  M. Bremner,et al.  Instantaneous Quantum Computation , 2008, 0809.0847.

[60]  Daniel A. Lidar,et al.  Classical Ising model test for quantum circuits , 2009, 0902.4889.

[61]  Giuliano Benenti,et al.  Quantum Computers, Algorithms and Chaos , 2006 .

[62]  Pranab Sen Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem , 2006, Computational Complexity Conference.

[63]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[64]  H. Briegel,et al.  Quantum algorithms for spin models and simulable gate sets for quantum computation , 2008, 0805.1214.

[65]  R. Raussendorf,et al.  Measurement-based quantum computation with the toric code states , 2006, quant-ph/0610162.

[66]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[67]  Yoshifumi Nakata,et al.  DIAGONAL-UNITARY 2-DESIGN AND THEIR IMPLEMENTATIONS BY QUANTUM CIRCUITS , 2012, 1206.4451.

[68]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[69]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[70]  Bryan Eastin Simulating Concordant Computations , 2010 .

[71]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  Raymond Laflamme,et al.  Quantum computing and quadratically signed weight enumerators , 2001, Inf. Process. Lett..

[73]  Piyush Srivastava,et al.  Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs , 2011, Journal of Statistical Physics.

[74]  Cyrus P. Master,et al.  Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms , 2003 .

[75]  W Dür,et al.  Completeness of the classical 2D Ising model and universal quantum computation. , 2007, Physical review letters.

[76]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[77]  O. Biham,et al.  SIMULATING ISING SPIN GLASSES ON A QUANTUM COMPUTER , 1996, quant-ph/9611038.

[78]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.

[79]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[80]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[81]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[82]  Michael A. Nielsen,et al.  Fault-tolerant quantum computation with cluster states , 2005 .

[83]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[84]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[85]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.