Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices

AlGaN/GaN high-electron mobility transistors (HEMTs) were fabricated on SiC substrates with epitaxial layers grown by multiple suppliers and methods. Devices with gate lengths varying from 0.50 to 0.09 mum were fabricated on each sample. We demonstrate the impact of varying the gate lengths and show that the unity current gain frequency response (fT) is limited by short-channel effects for all samples measured. We present an empirically based physical model that can predict the expected extrinsic fT for many combinations of gate length and commonly used barrier layer thickness (tbar) on silicon nitride passivated T-gated AlGaN/GaN HEMTs. The result is that even typical high-aspect-ratio (gate length to barrier thickness) devices show device performance limitations due to short-channel effects. We present the design tradeoffs and show the parameter space required to achieve optimal frequency performance for GaN technology. These design rules differ from the traditional GaAs technology by requiring a significantly higher aspect ratio to mitigate the short-channel effects.

[1]  M. Higashiwaki,et al.  AlGaN/GaN MIS-HFETs with f/sub T/ of 163 GHz using cat-CVD SiN gate-insulating and passivation Layers , 2006, IEEE Electron Device Letters.

[2]  S. Keller,et al.  AlGaN/GaN high electron mobility transistors with InGaN back-barriers , 2006, IEEE Electron Device Letters.

[3]  S. Kishimoto,et al.  Evaluation of effective electron velocity in AlGaN/GaN HEMTs , 2000 .

[4]  M. Hueschen,et al.  Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs , 1988 .

[5]  A. Kurdoghlian,et al.  GaN HFET for W-band Power Applications , 2006, 2006 International Electron Devices Meeting.

[6]  Ilesanmi Adesida,et al.  AlGaN/GaN HEMTs on SiC with over 100 GHz f/sub T/ and low microwave noise , 2001 .

[7]  M. Shur,et al.  Physics of GaN-based heterostructure field effect transistors , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[8]  D. Ducatteau,et al.  Punch-through in short-channel AlGaN/GaN HFETs , 2006, IEEE Transactions on Electron Devices.

[9]  G. Simin,et al.  High performance 0.25 μm gate-length AlGaN/GaN HEMTs on sapphire with power density of over 4.5 W/mm at 20 GHz , 2003 .

[10]  Toshiaki Matsui,et al.  Fabrication of sub‐50‐nm‐gate i‐AlGaN/GaN HEMTs on sapphire , 2003 .

[11]  D. Wong,et al.  Gate-recessed AlGaN-GaN HEMTs for high-performance millimeter-wave applications , 2005, IEEE Electron Device Letters.

[12]  M. Shimizu,et al.  Gate-Length Dependence of DC Characteristics in Submicron-Gate AlGaN/GaN High Electron Mobility Transistors , 2007 .

[13]  A. Ketterson,et al.  Delay time analysis for short gate-length GaAs MESFETs , 1995 .

[14]  Lester F. Eastman,et al.  Undoped AlGaN/GaN HEMTs for microwave power amplification , 2001 .

[15]  M. Uren,et al.  Measurements of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor , 2005, IEEE Transactions on Electron Devices.

[16]  J. Kuzmík,et al.  d.c. Performance of short-channel ion-implanted GaAs MESFETs (The role of gate length shortening) , 1990 .

[17]  Masayuki Abe,et al.  Short-channel effects in subquarter-micrometer-gate HEMTs: simulation and experiment , 1989 .

[18]  C. Wilkinson,et al.  Carrier transit delays in nanometer-scale GaAs MESFET's , 1993, IEEE Electron Device Letters.

[19]  M. Singh,et al.  Device scaling physics and channel velocities in AIGaN/GaN HFETs: velocities and effective gate length , 2006, IEEE Transactions on Electron Devices.

[20]  Y. Yamashita,et al.  Threshold voltage shifts in decananometre-gate AlGaN/GaN HEMTs , 2006 .

[21]  L. Eastman,et al.  Large-signal performance of deep submicrometer AlGaN/AlN/GaNHEMTs with a field-modulating plate , 2005, IEEE Transactions on Electron Devices.

[22]  Tetsuya Suemitsu,et al.  Intrinsic Transit Delay and Effective Electron Velocity of AlGaN/GaN High Electron Mobility Transistors , 2005 .

[23]  U. Mishra,et al.  30-W/mm GaN HEMTs by field plate optimization , 2004, IEEE Electron Device Letters.

[24]  Y. Okamoto,et al.  30-GHz-band over 5-W power performance of short-channel AlGaN/GaN heterojunction FETs , 2005, IEEE Transactions on Microwave Theory and Techniques.

[25]  M. B. Das A high aspect ratio design approach to millimeter-wave HEMT structures , 1985, IEEE Transactions on Electron Devices.

[26]  K. Brennan,et al.  Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures , 2002 .

[27]  I. Adesida,et al.  DC and microwave performance of high-current AlGaN/GaN heterostructure field effect transistors grown on p-type SiC substrates , 1998, IEEE Electron Device Letters.

[28]  T. Makimura,et al.  Effect of Epitaxial Layer Crystal Quality on DC and RF Characteristics of AlGaN/GaN Short-Gate High-Electron-Mobility Transistors on Sapphire Substrates , 2005 .

[29]  Gaudenzio Meneghesso,et al.  2.1 A/mm current density AlGaN/GaN HEMT , 2003 .

[30]  I. Adesida,et al.  0.15 μm gate-length AlGaN/GaN HEMTs with varying gate recess length , 2003 .

[31]  T. Mimura,et al.  High f T and f max AlGaN/GaN HFETs achieved by using thin and high‐Al‐composition AlGaN barrier layers and Cat‐CVD SiN passivation , 2006 .

[32]  P. Janke,et al.  GaN/AlGaN high electron mobility transistors with f τ of 110 GHz , 2000 .

[33]  Ilesanmi Adesida,et al.  AlGaN / GaN HEMTs on SiC with over 100 GHz fT and Low Microwave Noise , 2001 .

[34]  S. Keller,et al.  High-power AlGaN/GaN HEMTs for Ka-band applications , 2005, IEEE Electron Device Letters.

[35]  R. J. Shul,et al.  Bulk GaN and AlGaN∕GaN heterostructure drift velocity measurements and comparison to theoretical models , 2005 .

[36]  G. Jessen,et al.  AlGaN/GaN ohmic contact resistance variations across epitaxial suppliers , 2005 .

[37]  T. Matsui,et al.  AlGaN/GaN Heterostructure Field-Effect Transistors with Current Gain Cut-off Frequency of 152 GHz on Sapphire Substrates , 2005 .