Thermal Decomposition Kinetics of Polyol Ester Lubricants

Synthetic lubricants are widely used for applications that require high thermal and oxidative stability. In order to facilitate new designs and applications for these fluids, we are measuring a suite of thermophysical and transport properties for lubricant base fluids and mixtures. As part of the property measurements, here, we report the global thermal decomposition kinetics of four polyol ester lubricant base oils, in addition to a fully qualified (MIL-PRF-23699) formulation. The fluids were heated in stainless steel ampule reactors and the extent of decomposition was measured by gas chromatography coupled with flame ionization detection (GC-FID), from which pseudo-first-order rate constants were derived. The rate constants for decomposition ranged from 1 × 10–8 s–1 at 500 K to 2 × 10–4 s–1 at 675 K. Arrhenius parameters across this temperature regime are also reported. Other techniques for chemical characterization applied in this work include gas chromatography with mass spectrometry (GC-MS), nuclear ...

[1]  T. Bruno,et al.  Thermal Decomposition Kinetics of the Thermally Stable Jet Fuels JP-7, JP-TS and JP-900 , 2014 .

[2]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1 | NIST , 2013 .

[3]  V. Stepina Lubricants and Special Fluids , 2012 .

[4]  T. Bruno,et al.  Thermal Decomposition Kinetics of Kerosene-Based Rocket Propellants. 3. RP-2 with Varying Concentrations of the Stabilizing Additive 1,2,3,4-Tetrahydroquinoline , 2011 .

[5]  T. Bruno,et al.  Thermal Decomposition Kinetics of Propylcyclohexane , 2009 .

[6]  Megan E. MacDonald,et al.  Decomposition Rate Measurements of RP-1, RP-2, n-Dodecane, and RP-1 with Fuel Stabilizers (Preprint) , 2008 .

[7]  Thomas J. Bruno,et al.  Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet A , 2008 .

[8]  P. Bartl,et al.  Chemical characterization of polyol ester aviation lubricant residues , 2008 .

[9]  I. Mokbel,et al.  Vapor pressure measurements in the range 10−5 Pa to 1 Pa of four pentaerythritol esters: Density and vapor–liquid equilibria modeling of ester lubricants , 2007 .

[10]  Josefa Fernández,et al.  Density Measurements under Pressure for Mixtures of Pentaerythritol Ester Lubricants. Analysis of a Density−Viscosity Relationship† , 2007 .

[11]  Josefa Fernández,et al.  Dynamic Viscosity under Pressure for Mixtures of Pentaerythritol Ester Lubricants with 32 Viscosity Grade: Measurements and Modeling , 2007 .

[12]  A. Pensado,et al.  Relationship between Viscosity Coefficients and Volumetric Properties: Measurements and Modeling for Pentaerythritol Esters , 2006 .

[13]  R. Kauffman Mechanism for reaction between polyolester lubricant and ferrous metals, Part II Research phase , 2006 .

[14]  A. Pensado,et al.  Volumetric behaviour of the environmentally compatible lubricants pentaerythritol tetraheptanoate and pentaerythritol tetranonanoate at high pressures , 2005 .

[15]  P. Hauser,et al.  Measuring Thermal Degradation of a Polyol Ester Lubricant in Liquid Phase , 2005 .

[16]  T. Bruno Conditioning of Flowing Multiphase Samples for Chemical Analysis , 2005 .

[17]  T. Bruno,et al.  Thermal Decomposition Kinetics of RP-1 Rocket Propellant , 2005 .

[18]  P. Hauser,et al.  Novel Testing System for Evaluating the Thermal Stability of Polyol Ester Lubricants , 2004 .

[19]  Eiji Nagatomi,et al.  The Autoxidation of Simple Esters: Towards an Understanding of the Chemistry of Degradation of Polyol Esters Used as Lubricants , 2003 .

[20]  J. Krim,et al.  Nanotribology of a Vapor-Phase Lubricant: A Quartz Crystal Microbalance Study of Tricresylphosphate (TCP) Uptake on Iron and Chromium , 2002 .

[21]  D. Friend,et al.  Modeling bubble points of mixtures of hydrofluorocarbon refrigerants and polyol ester lubricants , 2002 .

[22]  R. Schlosberg,et al.  High stability esters for synthetic lubricant applications , 2001 .

[23]  N. Elvassore,et al.  A Cubic Equation of State with Group Contributions for the Calculation of Vapor−Liquid Equilibria of Mixtures of Hydrofluorocarbons and Lubricant Oils , 1999 .

[24]  H. S. Nagaraj,et al.  Oxidation Chemistry of a Pentaerythritol Tetraester Oil , 1999 .

[25]  A. Zeman,et al.  Polymer formation during thermal-oxidative ageing of aviation turbine oils , 1993 .

[26]  V. N. Bakunin,et al.  A Mechanism of Thermo-oxidative Degradation of Polyol Ester Lubricants , 1992 .

[27]  P. Smith 13C NMR spectroscopic characterization of trimethylol propane ester lubricants , 1992 .

[28]  T. Bruno Laboratory applications of the vortex tube , 1987 .

[29]  S. Korcek,et al.  Liquid-phase autoxidation of organic compounds at elevated temperatures. 2. Kinetics and mechanisms of the formation of cleavage products in n-hexadecane autoxidation , 1981 .

[30]  S. Korcek,et al.  Kinetics and mechanism of the autoxidation of pentaerythrityl tetraheptanoate at 180–220°C , 1980 .

[31]  S. Korcek,et al.  Liquid-phase autoxidation of organic compounds at elevated temperatures. 1. The stirred flow reactor technique and analysis of primary products from n-hexadecane autoxidation at 120-180.degree.C , 1979 .

[32]  J. L. Duda,et al.  The Chemical Degradation of Ester Lubricants , 1979 .

[33]  A. Zeman,et al.  Die massenspektrometrische Fragmentierung von Neopentylpolyolestern. 1—Pentaerythrittetrafettsäureester , 1978 .

[34]  E. Klaus,et al.  Thermal Characteristics of Some Organic Esters , 1970 .

[35]  Harold Ravner,et al.  Interactions in Neopentyl Polyol Ester—Tricresyl Phosphate—Iron Systems at 500 F , 1969 .