EFFECTS OF ALFVÉN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfvén waves (AWs) can significantly influence the basic physics of wave–particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

[1]  R. Erdélyi,et al.  Alfvén Waves in the Solar Atmosphere , 2012, 1210.3625.

[2]  L. Chen,et al.  KINETIC ALFVÉN WAVE INSTABILITY DRIVEN BY FIELD-ALIGNED CURRENTS IN SOLAR CORONAL LOOPS , 2012 .

[3]  Dejin Wu,et al.  Resonant wave-particle interactions modified by intrinsic Alfvénic turbulence , 2012 .

[4]  A. A. van Ballegooijen,et al.  MODEL FOR ALFVÉN WAVE TURBULENCE IN SOLAR CORONAL LOOPS: HEATING RATE PROFILES AND TEMPERATURE FLUCTUATIONS , 2012 .

[5]  L. Chen,et al.  Alfvénic turbulence generated by a beam of energetic ions via spontaneous process , 2012 .

[6]  K. Iwai,et al.  SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS , 2012 .

[7]  B. Pontieu,et al.  Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind , 2011, Nature.

[8]  A. Satya Narayanan,et al.  LOW-FREQUENCY OBSERVATIONS OF POLARIZED EMISSION FROM LONG-LIVED NON-THERMAL RADIO SOURCES IN THE SOLAR CORONA , 2011 .

[9]  S. Cranmer,et al.  HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVÉN WAVE TURBULENCE , 2011, 1105.0402.

[10]  K. Shibata,et al.  THE ROLE OF TORSIONAL ALFVÉN WAVES IN CORONAL HEATING , 2009, 0910.0962.

[11]  S. Tomczyk,et al.  TIME–DISTANCE SEISMOLOGY OF THE SOLAR CORONA WITH CoMP , 2009, 0903.2002.

[12]  D. J. Wu,et al.  Effects of the Lower Energy Cutoff Behavior of Power-Law Electrons on the Electron-Cyclotron Maser Instability , 2008 .

[13]  B. Pontieu,et al.  Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind , 2007, Science.

[14]  P. Judge,et al.  Alfvén Waves in the Solar Corona , 2007, Science.

[15]  T. Murawski Torsional oscillations of longitudinally inhomogeneous coronal loops , 2007, 0704.0360.

[16]  H. S. Nataraj,et al.  The Post-Coronal Mass Ejection Solar Atmosphere and Radio Noise Storm Activity , 2007 .

[17]  R. Treumann The electron–cyclotron maser for astrophysical application , 2006 .

[18]  S. Habbal,et al.  Coronal Loops Heated by Turbulence-driven Alfvén Waves , 2003 .

[19]  T. Zaqarashvili,et al.  Observation of coronal loop torsional oscillation , 2003, astro-ph/0301316.

[20]  C. Wu,et al.  A beam-maser instability: Direct amplification of radiation , 2002 .

[21]  S. Wang,et al.  Generation of Type III Solar Radio Bursts in the Low Corona by Direct Amplification , 2002 .

[22]  Y. P. Li,et al.  Energy Shortage of Nonthermal Electrons in Powering a Solar Flare , 2001 .

[23]  P. Dmitruk,et al.  Scaling Law for the Heating of Solar Coronal Loops , 1999, The Astrophysical journal.

[24]  M. Ruderman Coronal Loop Heating by Torsional Alfvén Waves Directly Driven by Footpoint Motions: Harmonic Driving versus Stochastic Driving , 1999 .

[25]  P. Dmitruk,et al.  Turbulent Coronal Heating and the Distribution of Nanoflares , 1997, astro-ph/9705050.

[26]  A. Mossman,et al.  Radio, visible, and X ray emission preceding and following a coronal mass ejection , 1996 .

[27]  P. Robinson Escape of fundamental electron-cyclotron maser emission from the sun and stars , 1989 .

[28]  Bob Smith,et al.  Writing interpreters (panel) , 1986, APL '85.

[29]  L. Vlahos,et al.  Comparative study of the loss cone-driven instabilities in the low solar corona , 1984 .

[30]  Donald B. Melrose,et al.  Electron-cyclotron masers as the source of certain solar and stellar radio bursts , 1982 .

[31]  G. Chanmugam,et al.  Polarized radiation from hot plasmas and applications to AM Herculis binaries , 1981 .

[32]  Lou‐Chuang Lee,et al.  A theory of the terrestrial kilometric radiation , 1979 .

[33]  G. Dulk,et al.  The Position of a Type I Storm Source in the Magnetic Field of an Active Region , 1973, Publications of the Astronomical Society of Australia.

[34]  P. Coleman Wave-like phenomena in the interplanetary plasma Mariner 2. , 1967 .

[35]  P. Fung,et al.  THEORETICAL DYNAMIC SPECTRA OF SOLAR TYPE-I STORM BURSTS. , 1966 .

[36]  Le Squeren Étude des orages radioélectriques solaires sur 169 MHz à l'aide de l'interféromètre en croix de la station de Nançay , 1963 .

[37]  H. Dodson,et al.  RÉSUMÉ of Visually and Photographically Observed Solar Activity at the Time of 200 Mc/S Noise Storms Near the 1954 Solar Minimum. , 1957 .

[38]  C. W. Allen Interpretation of Electron Densities from Corona Brightness , 1947 .

[39]  C. W. Allen Solar Radio-Noise of 200 Mc./s. and its Relation to Solar Observations , 1947 .

[40]  J. L. Pawsey,et al.  Solar radiation at radio frequencies and its relation to sunspots , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  Dejin Wu,et al.  Electron-cyclotron maser emission by power-law electrons in coronal loops , 2009 .

[42]  C. Mercier,et al.  Coronal Radio Bursts: A Signature of Nanoflares? , 1997 .

[43]  D. J. Mclean Solar Activity in the Corona , 1981, Publications of the Astronomical Society of Australia.

[44]  Ø. Elgarøy Solar noise storms. , 1977 .

[45]  V. V. Zhelezni︠a︡kov Radio emission of the sun and planets , 1970 .

[46]  V. L. Ginzburg,et al.  The propagation of electromagnetic waves in plasmas , 1970 .

[47]  J. S. Hey,et al.  Solar Radiations in the 4–6 Metre Radio Wave-Length Band , 1946, Nature.